[1]. Ballard, D. (1966). Foaming in amine-based CO2 capture process, Hydrocarbon Process, 45: 137-144. ##
[2]. Ballard, D. (1986). Fom in amine system, Proceedings of Laurance Reid Gas Conditioning Conference, A1 – A38. ##
[3]. Pauley C. R. (1991) Face the facts about amine foaming, Chemical Engineering Progress, 87, 33 – 38, ISSN
0360-7275. ##
[4]. Stewart, E. J., Lanning, R. A. (1994), Reduce amine plant solvent losses, Hydrocarbon Processing, 73, 67–81. ##
[5]. Von Phul, S. A. (2001), Sweetening process foaming and abatement, 51st, Annual Lawrence Reid Gas Conditioning Conference, Norman, Oklahoma, February 25–28. ##
[6]. Agrawal, J.M. (1981). Method of defoaming in gas purification systems, U.S. Patent, 4,287, 1. ##
[7]. Perry, C. R. (1971). Filtration Method and Apparatus, U.S. Patent, 3, 568,405. ##
[8]. Thitakamol, B., Veawab, A., & Aroonwilas, A. (2009). Foaming in amine-based CO2 capture process: experiment, modeling and simulation. Energy Procedia, 1(1). 1381-1386, doi.org/10.1016/j.egypro.2009.01.181. ##
[9]. McCarthy, J., & Trebble, M. A. (1996). An experimental investigation into the foaming tendency of diethanolamine gas sweetening solutions. Chemical Engineering Communications, 144(1). 159-171, doi.org/10.1080/00986449608936451. ##
[10]. Thitakamol, B., & Veawab, A. (2008). Foaming behavior in CO2 absorption process using aqueous solutions of single and blended alkanolamines. Industrial & Engineering Chemistry Research, 47(1). 216-225, doi.org/10.1021/ie070366l. ##
[11]. Chen X., Freeman S.A., Rochelle G.T. (2011) Foaming of aqueous piperazine and monoethanolamine for CO2 capture, nternational journal of greenhouse gas control, 5: 381–386, doi.org/10.1016/j.ijggc.2010.09.006. ##
[12]. Alhseinat, E., Pal, P., Ganesan, A., & Banat, F. (2015). Effect of MDEA degradation products on foaming behavior and physical properties of aqueous MDEA solutions. International Journal of Greenhouse Gas Control, 37, 280-286, doi.org/10.1016/j.ijggc.2015.03.036. ##
[13]. Sedransk Campbell, K. L., Lapidot, T., & Williams, D. R. (2015). Foaming of CO2-loaded amine solvents degraded thermally under stripper conditions, Industrial & Engineering Chemistry Research, 54(31), 7751-7755, doi.org/10.1021/acs.iecr.5b01935. ##
[14]. Vahidi, M., Tavasoli, A., & Rashidi, A. M. (2016). Preparation of amine functionalized UiO-66, mixing with aqueous N-Methyldiethanolamine and application on CO2 solubility. Journal of Natural Gas Science and Engineering, 28, 651-659, doi.org/10.1016/j.jngse.2015.11.050. ##
[15]. ASTM, 2003. ASTM D892-Standard Test Method for Foaming Characteristics of Lubricating Oil. ASTM, West Conshohocken, PA. ##
[16]. Butt H.-J., Graf K., Kappl M. (2003) Physics and Chemistry of Interfaces, 3rd Edition, Wiley-VCH Publication, Berlin. ##
[17]. Du Noüy P. L., J. (1925). An interfacial tensiometer for universal use, Journal of General Physiology, 7: 625-631, doi: 10.1085/jgp.7.5.625. ##
[18]. Bikerman J. J. (1973). Foams, Springer-Verlag Publication, New York. ##
[19]. Lotfi R., Saboohi Y., Rashidi A. M. (2010). Numerical study of forced convective heat transfer of Nanofluids: Comparison of different approaches, International Communications in Heat and Mass Transfer, 37: 74–78, doi.org/10.1016/j.icheatmasstransfer.2009.07.013. ##
[20]. Hamilton, R. L., & Crosser, O. K. (1962). Thermal conductivity of heterogeneous two-component systems, Industrial & Engineering Chemistry Fundamentals, 1(3), 187-191, doi.org/10.1021/i160003a005. ##
[21]. Wang, H., & Chen, X. (2022). A comprehensive review of predicting the thermophysical properties of nanofluids using machine learning methods, Industrial & Engineering Chemistry Research, 61(40), 14711-14730, doi.org/10.1021/acs.iecr.2c02059. ##
[22]. Maiga, S. E. B., Palm, S. J., Nguyen, C. T., Roy, G., & Galanis, N. (2005). Heat transfer enhancement by using nanofluids in forced convection flows, International journal of Heat and Fluid Flow, 26(4), 530-546, doi.org/10.1016/j.ijheatfluidflow.2005.02.004. ##
[23]. Pinto, D. D., Monteiro, J. G. S., Johnsen, B., Svendsen, H. F., & Knuutila, H. (2014). Density measurements and modelling of loaded and unloaded aqueous solutions of MDEA (N-methyldiethanolamine), DMEA (N, N-dimethylethanolamine), DEEA (diethylethanolamine) and MAPA (N-methyl-1, 3-diaminopropane). International Journal of Greenhouse Gas Control, 25, 173-185, doi.org/10.1016/j.ijggc.2014.04.017. ##
[24]. Pilon, L., Fedorov, A. G., & Viskanta, R. (2001). Steady-state thickness of liquid–gas foams. Journal of Colloid and Interface Science, 242(2). 425-436, doi.org/10.1006/jcis.2001.7802. ##
[25]. Ogawa Y., Huin D., Gaye H., Tokumitsu N. (1993) Physical Model of Slag Foaming, ISIJ International, 33: 224–232. ##
[26]. Nik, O. G., Chen, X. Y., & Kaliaguine, S. (2012). Functionalized metal organic framework-polyimide mixed matrix membranes for CO2/CH4 separation, Journal of Membrane Science, 413, 48-61, doi.org/10.1016/j.memsci.2012.04.003. ##
[27]. Luu, C. L., Van Nguyen, T. T., Nguyen, T., & Hoang, T. C. (2015). Synthesis, characterization and adsorption ability of UiO-66-NH2. Advances in Natural Sciences: Nanoscience and Nanotechnology, 6(2), 025004, doi: 10.1088/2043-6262/6/2/025004. ##
[28]. Kandiah, M., Nilsen, M. H., Usseglio, S., Jakobsen, S., Olsbye, U., Tilset, M., & Lillerud, K. P. (2010). Synthesis and stability of tagged UiO-66 Zr-MOFs. Chemistry of Materials, 22(24), 6632-6640, doi.org/10.1021/cm102601v. ##
[29]. Gomes Silva, C., Luz, I., Llabres i Xamena, F. X., Corma, A., & García, H. (2010). Water stable Zr–benzenedicarboxylate metal–organic frameworks as photocatalysts for hydrogen generation. Chemistry–A European Journal, 16(36), 11133-11138, doi.org/10.1002/chem.200903526. ##