[1]. Rashid, S., Mousapour, M. S., Ayatollahi, S., Vossoughi, M., & Beigy, A. H. (2015). Wettability alteration in carbonates during “Smart Waterflood”: Underlying mechanisms and the effect of individual ions, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 487, 142-153, doi.org/10.1016/j.colsurfa.2015.09.067. ##
[2]. Zhang, P., Tweheyo, M. T., & Austad, T. (2007). Wettability alteration and improved oil recovery by spontaneous imbibition of seawater into chalk: Impact of the potential determining ions Ca2+, Mg2+, and SO42−, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 301(1-3), 199-208, doi.org/10.1016/j.colsurfa.2006.12.058. ##
[3]. Lager, A., Webb, K. J., Collins, I. R., & Richmond, D. M. (2008, April). LoSal™ enhanced oil recovery: evidence of enhanced oil recovery at the reservoir scale. In SPE Improved Oil Recovery Conference? (pp. SPE-113976). SPE, doi.org/10.2118/113976-MS. ##
[4]. Austad, T., RezaeiDoust, A., & Puntervold, T. (2010). Chemical mechanism of low salinity water flooding in sandstone reservoirs. In SPE Improved Oil Recovery Conference? SPE-129767, doi.org/10.2118/129767-MS. ##
[5]. Al-Attar, H. H., Mahmoud, M. Y., Zekri, A. Y., Almehaideb, R. A., & Ghannam, M. T. (2013, June). Low salinity flooding in a selected carbonate reservoir: experimental approach. In SPE Europec featured at EAGE Conference and Exhibition? SPE-164788, doi.org/10.2118/164788-MS. ##
[6]. Tetteh, J. T., Rankey, E., & Barati, R. (2017, October). Low salinity waterflooding effect: Crude oil/brine interactions as a recovery mechanism in carbonate rocks, In Offshore Technology Conference Brasil, doi.org/10.4043/28023-MS. ##
[7]. J. Wang, H. Song, and Y. Wang, (2020) Investigation on the micro-flow mechanism of enhanced oil recovery by low-salinity water flooding in carbonate reservoir, » Fuel, 266, 117156, doi.org/10.4043/28023-MS. ##
[8]. Septiadi, W. N., Trisnadewi, I. A. N. T., Putra, N., & Setyawan, I. (2018). Synthesis of hybrid nanofluid with two-step method,(2018) E3S Web of Conferences, 67, doi: 10.1051/e3sconf/20186703057. ##
[9]. Hendraningrat, L., & Torsæter, O. (2015). Metal oxide-based nanoparticles: revealing their potential to enhance oil recovery in different wettability systems, Applied Nanoscience, 5, 181-199, doi.org/10.1007/s13204-014-0305-6. ##
[10]. Mahmoudi, S., Jafari, A., & Javadian, S. (2019). Temperature effect on performance of nanoparticle/surfactant flooding in enhanced heavy oil recovery, Petroleum Science, 16, 1387-1402, doi.org/10.1007/s12182-019-00364-6. ##
[11]. Yu, W., & Xie, H. (2012). A review on nanofluids: preparation, stability mechanisms, and applications. Journal of nanomaterials, 1-17, doi.org/10.1155/2012/435873. ##
[12]. Mukherjee, S., & Paria, S. (2013). Preparation and stability of nanofluids-a review, IOSR Journal of Mechanical and civil engineering, 9(2), 63-69, doi: 10.9790/1684-0926369. ##
[13]. Bahari, N. M., Che Mohamed Hussein, S. N., & Othman, N. H. (2021). Synthesis of Al2O3–SiO2/water hybrid nanofluids and effects of surfactant toward dispersion and stability, Particulate Science and Technology, 39(7), 844-858, doi.org/10.1080/02726351.2020.1838015. ##
[14]. Jarrahian, K., Seiedi, O., Sheykhan, M., Sefti, M. V., & Ayatollahi, S. (2012). Wettability alteration of carbonate rocks by surfactants: a mechanistic study, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 410, 1-10, doi.org/10.1016/j.colsurfa.2012.06.007. ##
[15]. Karimi, M., Al-Maamari, R. S., Ayatollahi, S., & Mehranbod, N. (2016). Wettability alteration and oil recovery by spontaneous imbibition of low salinity brine into carbonates: Impact of Mg2+, SO42− and cationic surfactant, Journal of Petroleum Science and Engineering, 147, 560-569, doi.org/10.1016/j.petrol.2016.09.015. ##
[16]. Ahmadi, S., Hosseini, M., Tangestani, E., Mousavi, S. E., & Niazi, M. (2020). Wettability alteration and oil recovery by spontaneous imbibition of smart water and surfactants into carbonates. Petroleum Science, 17, 712-721, doi.org/10.1007/s12182-019-00412-1. ##
[17]. Maghzi, A., Mohammadi, S., Ghazanfari, M. H., Kharrat, R., & Masihi, M. (2012). Monitoring wettability alteration by silica nanoparticles during water flooding to heavy oils in five-spot systems: A pore-level investigation, Experimental Thermal and Fluid Science, 40, 168-176, doi.org/10.1016/j.expthermflusci.2012.03.004. ##
[18]. Salem Ragab, A. M., & Hannora, A. E. (2015, October). A Comparative investigation of nano particle effects for improved oil recovery–experimental work, In SPE Kuwait oil and gas show and conference. OnePetro, doi.org/10.2118/175395-MS. ##
[19]. Rostami, P., Sharifi, M., Aminshahidy, B., & Fahimpour, J. (2019). Enhanced oil recovery using silica nanoparticles in the presence of salts for wettability alteration. Journal of Dispersion Science and Technology, doi.org/10.1080/01932691.2019.1583575. ##
[20]. Ismail, H., Sulaiman, M. Z., & Aizzat, M. A. H. (2020, April). Qualitative investigations on the stability of Al2O3-SiO2 hybrid water-based nanofluids. In IOP Conference Series: Materials Science and Engineering, 788, (1). 012091, IOP Publishing, doi: 10.1088/1757-899X/788/1/012091. ##
[21]. Ansari, H., Riazi, M., & Sabbaghi, S. (2018). An Experimental Investigation of Wettability Alteration of Carbonated Rock Using Alpha-Alumina Nanofluid, Journal of Petroleum Research, 28(97-5), 47-58, DOI: 10.22078/pr.2018.3098.2460. ##
[22]. Pourafshary, P., & Moradpour, N. (2019). Hybrid EOR methods utilizing low-salinity water, Enhanc. Oil Recovery Process, New Technol, 8, 25. ##
[23] N. K. Renuka, A. V. Shijina, and A. K. Praveen, Mesoporous γ-alumina nanoparticles: Synthesis, characteri
zation and dye removal efficiency, Materials Letters, Vol. 82, pp. 42-44, 2012, doi: 10.1016/j.matlet.2012.05.043. ##
[24]. F.Yu, H. Jiang, F.Xu, Zh. Fan, H. Su, J. Li, (2019) New insights into flow physics in the EOR process based on 2.5D reservoir micromodels, Journal of Petroleum Science and Engineering. ##
[25]. Dror, Y., Cohen, Y., & Yerushalmi‐Rozen, R. (2006). Structure of gum arabic in aqueous solution, Journal of Polymer Science Part B: Polymer Physics, 44(22), 3265-3271, doi.org/10.1002/polb.20970. ##
[26]. Sowunmi, A. O., Efeovbokhan, V. E., Orodu, O. D., & Oni, B. A. (2022). Polyelectrolyte–nanocomposite for enhanced oil recovery: influence of nanoparticle on rheology, oil recovery and formation damage, Journal of Petroleum Exploration and Production Technology, 12(2), 493-506., doi: 10.1007/s13202-021-01358-0. ##
[27]. Kshirsagar, D. P., & Venkatesh, M. A. (2021). A review on hybrid nanofluids for engineering applications, Materials Today: Proceedings, 44, 744-755, doi.org/10.1016/j.matpr.2020.10.637. ##
[28]. Hendraningrat, L., & Torsaeter, O. (2014, March). Unlocking the potential of metal oxides nanoparticles to enhance the oil recovery, In Offshore Technology Conference Asia, OTC-24696, OTC, doi.org/10.4043/24696-MS. ##
[29]. Dehaghani, A. H. S., & Daneshfar, R. (2019). How much would silica nanoparticles enhance the performance of low-salinity water flooding? Petroleum Science, 16, 591-605, doi.org/10.1007/s12182-019-0304-z. ##
[30]. Daneshvar, N., Khataee, A. R., Rasoulifard, M. H., & Pourhassan, M. (2007). Biodegradation of dye solution containing Malachite Green: Optimization of effective parameters using Taguchi method, Journal of Hazardous Materials, 143(1-2), 214-219, doi.org/10.1016/j.jhazmat.2006.09.016. ##
[31]. Mahpishanian, A. M., Shahverdi, H., Simjoo, M., & Zaeri, M. R. (2021). Experimental Investigation of Nano Silica on Wettability Alteration and Enhanced Oil Recovery from Carbonate Reservoir Using Low Salinity Water. Journal of Petroleum Research, 30(99-6), 3-20, doi: 10.22078/pr.2020.4187.2897. ##
[32]. Mofrad, S. K., & Dehaghani, A. H. S. (2020). An experimental investigation into enhancing oil recovery using smart water combined with anionic and cationic surfactants in carbonate reservoir, Energy Reports, 6, 543-549, doi.org/10.1016/j.egyr.2020.02.034. ##
[33]. Zhang, H., Shan, G., Liu, H., & Xing, J. (2007). Surface modification of γ-Al2O3 nano-particles with gum arabic and its applications in adsorption and biodesulfurization. Surface and Coatings Technology, 201(16-17), 6917-6921, doi: 10.1016/j.surfcoat.2006.11.043. ##
[34]. Bornaee, A. H., Manteghian, M., Rashidi, A., Alaei, M., & Ershadi, M. (2014). Oil-in-water Pickering emulsions stabilized with functionalized multi-walled carbon nanotube/silica nanohybrids in the presence of high concentrations of cations in water, Journal of Industrial and Engineering Chemistry, 20(4), 1720-1726, doi: 10.1016/j.jiec.2013.08.022. ##
[35]. Habibi, S., Jafari, A., & Fakhroueian, Z. (2020). Wettability alteration analysis of smart water/novel functionalized nanocomposites for enhanced oil recovery. Petroleum Science, 17, 1318-1328, doi: 10.1007/s12182-020-00436-y. ##
[36]. Gallego, A., Cacua, K., Herrera, B., Cabaleiro, D., Piñeiro, M. M., & Lugo, L. (2020). Experimental evaluation of the effect in the stability and thermophysical properties of water-Al2O3 based nanofluids using SDBS as dispersant agent, Advanced Powder Technology, 31(2), 560-570, doi.org/10.1016/j.apt.2019.11.012. ##
[37]. Hou, B., Jia, R., Fu, M., Wang, Y., Jiang, C., Yang, B., & Huang, Y. (2019). Wettability alteration of oil-wet carbonate surface induced by self-dispersing silica nanoparticles: Mechanism and monovalent metal ion’s effect, Journal of Molecular Liquids, 294, 111601, doi.org/10.1016/j.molliq.2019.111601. ##
[38]. Wasan, D., Nikolov, A., & Kondiparty, K. (2011). The wetting and spreading of nanofluids on solids: Role of the structural disjoining pressure, Current Opinion in Colloid & Interface Science, 16(4), 344-349, doi.org/10.1016/j.cocis.2011.02.001. ##
[39]. Rashid, F. (2021). Experimental investigation of the effect of nanoparticles and polymer on interfacial tension between oil and water during Enhanced Oil Recovery (EOR) (Doctoral dissertation, University of Salford (United Kingdom). ##
[40]. Arain, Z. U. A. (2020). Influence of silica nanoparticles on the surface properties of carbonate reservoirs (Doctoral dissertation, Curtin University), hdl.handle.net/20.500.11937/81266. ##
[41]. Nowrouzi, I., Manshad, A. K., & Mohammadi, A. H. (2020). Effects of TiO2, MgO and γ-Al2O3 nano-particles on wettability alteration and oil production under carbonated nano-fluid imbibition in carbonate oil reservoirs. Fuel, 259, 116110, doi: 10.1016/j.fuel.2019.116110. ##
[42]. Hamdi, S. S., Al-Kayiem, H. H., & Muhsan, A. S. (2020). Natural polymer non-covalently grafted graphene nanoplatelets for improved oil recovery process: A micromodel evaluation. Journal of Molecular Liquids, 310, 113076., doi: 10.1016/j.molliq.2020.113076. ##
[43]. Buckley, S. E., & Leverett, M. (1942). Mechanism of fluid displacement in sands. Transactions of the AIME, 146(01), 107-116, doi.org/10.2118/942107-G. ##