تعیین خصوصیات فضای متخلخل یک سنگ‌ کربناته با استفاده از تصاویر میکرو سی‌تی‌اسکن توسط الگوریتم‌ شبکه عصبی پیچشی

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده‌ مهندسی نفت، دانشگاه صنعتی امیرکبیر، تهران، ایران

چکیده

در این مطالعه، عملکرد شبکه عصبی پیچشی در مشخصه‌سازی فضای متخلخل سنگ مورد ارزیابی قرار گرفته است. جهت آموزش شبکه، مجموعه‌ای از تصاویر میکرو سی‌تی‌اسکن سه‌بعدی از زیر نمونه‌های یک سنگ کربناته C1 با خصوصیات فیزیکی مربوطه اعم از تخلخل، متوسط اندازه‌ گلوگاه، متوسط اندازه‌ منافذ، متوسط عدد پیوستگی و متوسط ضریب شکل منافذ فراهم گردیده است. تصویر به‌کاربرده شده از نمونه سنگ کربناته جهت آماده‌سازی مجموعه تصاویر ورودی، به ۹۲۶۱ تصویر به ابعاد ۱۰۰×۱۰۰×۱۰۰ واکسل تقسیم‌ شده است و سپس با بهره‌گیری از الگوریتم کره بیشینه محاطی برای هر نمونه، خصوصیات نام برده به دست آمده است. در ادامه با تقسیم‌بندی مجموعه داده به دست آمده به سه بخش آموزش، ارزیابی و آزمایش (۷5: ۱5: ۱۰)، شبکه طراحی‌شده از جهت تعداد لایه و نرخ یادگیری مورد مقایسه و ارزیابی قرارگرفته است. سپس بعد از آزمایش شبکه بر روی مجموعه داده‌های آزمایش، ضریب تعیین پارامترها به ترتیب ذکرشده، 99%، 2/90%، 5/94%، 6/93% و 3/75% و میانگین درصد خطای نسبی برای هر یک از خصوصیات کمتر از ۴% محاسبه‌ شده است. ازاین‌رو  باتوجه به نتایج حاصل شده می‌توان نتیجه گرفت که تطابق خوبی میان مقادیر پیش‌بینی‌شده و مقادیر واقعی خصوصیات موجود است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Determining the Characteristics of the Porous Media for a Carbonate Rock using Micro CT Scan Images Assisted by Convolutional Neural Network

نویسندگان [English]

  • sara shirafkan
  • Mohammad Ahmadi
  • Mehdi Shabani
Petroleum Engineering Department, Amirkabir University of Technology, Tehran, Iran
چکیده [English]

Accurately predicting subsurface flow properties holds immense significance across various domains, ranging from water resource management to the petroleum industry. In this study, recognizing the computational intensity and time constraints associated with digital rock analysis for petrophysical property calculations, we introduce a workflow that leverages deep learning to swiftly and precisely estimate these properties from micro-CT images, obviating the need for resource-intensive computational methods. Specifically, a Convolutional Neural Network (CNN) was employed to train and predict multiple physical properties of porous media using micro-CT scan images as input data. The micro-CT scan images, derived from a carbonate rock sample, were divided into 9,261 images, each with dimensions of 100x100x100, for network training. Key parameters such as porosity, throat size, pore size, connection number, and pore shape factor for each image were computed using network extraction algorithms. The designed network›s performance was evaluated, considering factors like the number of layers and learning rate. Subsequently, when tested on a separate dataset, the network exhibited impressive coefficients of determination for the mentioned parameters, namely 99% for porosity, 90.2% for Avg.throat size, 94.5% for Avg.pore size, 93.6% for Avg.connection number, and 75.3% for Avg.pore shape factor. Furthermore, the average relative error percentage for each property remained below 4%. These results signify a strong agreement between the predicted values and the actual properties, affirming the efficacy of this approach in swiftly and accurately estimating petrophysical properties from micro-CT images.

کلیدواژه‌ها [English]

  • Convolutional Neural Network
  • Micro-CT Scan Images
  • Carbonate Rock
  • Learning Rate
  • Coefficients of Determination
[1]. Dong, H. & Blunt M. J. (2009). Pore-network extraction from micro-computerized-tomography images, Physical Review E, 80(3), 036307, doi.org/10.1103/PhysRevE.80.036307. ##
[2]. Niu, Y. (2020). Digital rock segmentation for petrophysical analysis with reduced user bias using convolutional neural networks, Water Resources Research, 56(2), e2019WR026597, doi.org/10.1029/2019WR026597. ##
[3]. Raeini, A. Q. (2017). Generalized network modeling: Network extraction as a coarse-scale discretization of the void space of porous media, Physical Review E, 96(1): 013312, doi.org/10.1103/PhysRevE.96.013312. ##
[4]. Silin, D., & Patzek, T. (2006). Pore space morphology analysis using maximal inscribed spheres, Physica A: Statistical mechanics and its applications, 371(2), 336-360, doi.org/10.1016/j.physa.2006.04.048. ##
[5]. Al-Kharusi, A.S. & Blunt, M.J. (2007). Network extraction from sandstone and Carbonate pore space images, Journal of Petroleum Science and Engineering, 56: 219-231, doi.org/10.1016/j.petrol.2006.09.003. ##
[6]. Rabbani, A., Jamshidi, S., & Salehi, S. (2014). An automated simple algorithm for realistic pore network extraction from micro-tomography images, Journal of Petroleum Science and Engineering, 123: 164-171, doi.org/10.1016/j.petrol.2014.08.020. ##
[7]. Barzegar, F., Masihi, M., & Tabar, M. A. (2020). A rigorous algebraic-analytical method for pore network extraction from micro-tomography images, Journal of Hydrology, 590, 125561, doi.org/10.1016/j.jhydrol.2020.125561. ##
[8]. Tembely, M. & A. AlSumaiti (2019). Deep learning for a fast and accurate prediction of complex carbonate rock permeability from 3D micro-CT images, Abu Dhabi International Petroleum Exhibition & Conference, Society of Petroleum Engineers, doi.org/10.2118/197457-MS. ##
[9] شکری، س.، صادقی م. ت. و احمدی مرودوست، م. (1392) ارائه روش ترکیبی پیش پردازش داده‌ها در ماشین بردار رگرسیون جهت پیش‌بینی کیفیت گازوئیل پالایش‌شده، پژوهش نفت، 75،: (23)، 116 - 102. ##
[10]. Sudakov, O. (2019). Driving digital rock towards machine learning: Predicting permeability with gradient boosting and deep neural networks, Computers & geosciences, 127: 91-98, doi.org/10.1016/j.cageo.2019.02.002. ##
[11]. Alqahtani, N. Alzubaidi, F., Armstrong, R. T., Swietojanski, P., & Mostaghimi, P. (2020). Machine learning for predicting properties of porous media from 2d X-ray images. Journal of Petroleum Science and Engineering 184: 106514, doi.org/10.1016/j.petrol.2019.106514. ##
[12]. Mostaghimi, P., Blunt, M. J., & Bijeljic, B. (2013). Computations of absolute permeability on micro-CT images. Mathematical Geosciences, 45(1), 103-125. ##
[13]. Raeini, A. (2020). https://github.com/ImperialCollegeLondon/pnextract. ##
[14]. Bultreys, T., Lin, Q., Gao, Y., Raeini, A. Q., AlRatrout, A., Bijeljic, B., & Blunt, M. J. (2018). Validation of model predictions of pore-scale fluid distributions during two-phase flow. Physical Review E, 97(5), 053104, doi.org/10.1103/PhysRevE.97.053104.‏ ##
[15]. Krizhevsky A, Sutskever I, Hinton GE, editors (2012). Imagenet classification with deep convolutional neural networks, Advances in Neural Information Processing Systems. ##
[16]. LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning, Nature, 521(7553), 436-444. ##
[17]. Karimpouli, S., & Fattahi, H. (2018). Estimation of P-and S-wave impedances using Bayesian inversion and adaptive neuro-fuzzy inference system from a carbonate reservoir in Iran. Neural Computing and Applications, 29(11), 1059-1072. ##