[1]. Bernard, G.G. (1967). Effect of floodwater salinity on recovery of oil from cores containing clays, In SPE California Regional Meeting, Society of Petroleum Engineers, doi.org/10.2118/1725-MS.##
[2]. Buckley, J., Morrow, N. (2010). Improved oil recovery by low salinity waterflooding: a mechanistic review, In 11th international symposium on evaluation of wettability and its effect on oil recovery, Calgary, 63(5),106-112 doi:10.2118/129421-MS. ##
[3]. McGuire, P. L., Chatham, J. R., Paskvan, F. K., Sommer, D. M., & Carini, F. H. (2005). Low salinity oil recovery: An exciting new EOR opportunity for Alaska›s North Slope, In SPE Western Regional Meeting, Society of Petroleum Engineers, doi.org/10.2118/93903-MS. ##
[4]. Lager, A., Webb, K. J., Black, C. J. J., Singleton, M., & Sorbie, K. S. (2008). Low salinity oil recovery-an experimental investigation1. Petrophysics-The SPWLA Journal of Formation Evaluation and Reservoir Description, Petrophysics, 49(01). ##
[5]. Ligthelm, D.J., Gronsveld, J., Hofman, J., Brussee, N., Marcelis, F., van der Linde, H. (2009). Novel waterflooding strategy by manipulation of injection brine composition, In EUROPEC/EAGE Conference and Exhibition, Society of Petroleum Engineers, doi.org/10.2118/119835-MS. ##
[6]. RezaeiDoust, A., Puntervold, T., Strand, S., & Austad, T. (2009). Smart water as wettability modifier in carbonate and sandstone: A discussion of similarities/differences in the chemical mechanisms, Energy & fuels, 23(9). 4479-4485, doi.org/10.1021/ef900185q. ##
[7]. Bahaloo Horeh, M., Ghorbanizadeh, S., & Rostami, B. (2020). The effect of water-soluble compounds of acidic crude oil on surface and inter facial tension in low salinity water injection, Journal of Petroleum Research, 29(109). 52-63. ##
[8]. Alotaibi, M. B., Azmy, R. M., & Nasr-El-Din, H. A. (2010). A comprehensive EOR study using low salinity water in sandstone reservoirs, In SPE Improved Oil Recovery Symposium, Society of Petroleum Engineers, doi.org/10.2118/129976-MS. ##
[9]. Morrow, N., & Buckley, J. (2011). Improved oil recovery by low-salinity waterflooding, Journal of Petroleum Technology, 63(05). 106-112, doi.org/10.2118/129421-JPT. ##
[10]. Han, P., Geng, J., Ding, H., Zhang, Y., & Bai, B. (2020). Experimental study on the synergistic effect of nanogel and low salinity water on enhanced oil recovery for carbonate reservoirs, Fuel, 265, 116971, doi.org/10.1016/j.fuel.2019.116971. ##
[11]. Austad, T., RezaeiDoust, A., & Puntervold, T. (2010). Chemical mechanism of low salinity water flooding in sandstone reservoirs, In Improved Oil Recovery Symposium, SPE 129767, 1-17, doi.org/10.2118/129767-MS. ##
[12]. Sohrabi, M., Mahzari, P., Farzaneh, S. A., Mills, J. R., Tsolis, P., & Ireland, S. (2017). Novel insights into mechanisms of oil recovery by low salinity water injection, In SPE Middle East Oil & Gas Show and Conference, Society of Petroleum Engineers, 22 (02). 407–416, doi.org/10.2118/172778-PA. ##
[13]. Jerauld, G. R., Lin, C. Y., Webb, K. J., & Seccombe, J. C. (2008). Modeling low-salinity waterflooding, SPE Reservoir Evaluation & Engineering, 11(06), 1000-1012, doi.org/10.2118/102239-PA. ##
[14]. Malmir, P., Hashemi, A., & Soltani Solgani, B. (2019). Experimental study of polymer injection on enhanced oil recovery from heavy oil reservoirs and determination of optimum injection concentration, Journal of Petroleum Research, 29(98-3). 120-130, doi: 10.22078/PR.2019.3503.2602. ##
[15]. Kyani, A., & Hashemizadeh, A. (2022). Successful case studies on the use of polymers to EOR by polymer flooding, Journal of Petroleum Research, 32(1401-1). 24-50, doi: 10.22078/PR.2022.4508.3033. ##
[16]. Sharma, M. M., & Filoco, P. R. (2000). Effect of brine salinity and crude-oil properties on oil recovery and residual saturations, SPE Journal, 5 (03): 293–300, doi.org/10.2118/65402-PA. ##
[17]. Ayirala, S., Boqmi, A., Alghamdi, A., & AlSofi, A. (2019). A designer water process for offshore low salinity and polymer flooding applications, In SPE Improved Oil Recovery Symposium, Society of Petroleum Engineers, 2019, 1 - 15 doi.org/10.3997/2214-4609.201900094. ##
[18]. Fjelde, I., Omekeh, A. V., & Sokama-Neuyam, Y. A. (2014). Low salinity water flooding: Effect of crude oil composition, In SPE Improved Oil Recovery Symposium, Society of Petroleum Engineers, doi.org/10.2118/169090-MS. ##
[19]. Shaker Shiran, B., & Skauge, A. (2013). Enhanced oil recovery (EOR) by combined low salinity water/polymer flooding, Energy & Fuels, 27(3). 1223-1235, doi.org/10.1021/ef301538e. ##
[20]. Cottin, C., Bourgeois, M., Bursaux, R., Jimenez, J., & Lassalle, S. (2014) Secondary and tertiary polymer flooding on highly permeable reservoir cores: experimental results, In SPE EOR Conference at Oil and Gas West Asia, Society of Petroleum Engineers, doi.org/10.2118/169692-MS. ##
[21]. Yang, J., Dong, Z., & Lin, M. (2015). The Impact of brine composition and salinity on the wettability of sandstone, Petroleum Science and Technology, 33(4). 430-436, doi.org/10.1080/10916466.2014.990093. ##
[22]. Delamaide, E. (2016). Comparison of primary, secondary and tertiary polymer flood in heavy oil-field results, In SPE Trinidad and Tobago Section Energy Resources Conference, Society of Petroleum Engineers, doi.org/10.2118/180852-MS. ##
[23]. Mokhtari, R., & Ayatollahi, S. (2019). Dissociation of polar oil components in low salinity water and its impact on crude oil–brine interfacial interactions and physical properties. Petroleum Science, 16(2). 328-343. ##
[24]. Zhao, Y., Yin, S., Seright, R. S., Ning, S., Zhang, Y., & Bai, B. (2021). Enhancing heavy-oil-recovery efficiency by combining low-salinity-water and polymer flooding, SPE Journal, 26(03). 1535-1551, doi.org/10.2118/204220-PA. ##
[25]. Farhadi, H., Fatemi, M., & Ayatollahi, S. (2021). Experimental investigation on the dominating fluid-fluid and rock-fluid interactions during low salinity water flooding in water-wet and oil-wet calcites, Journal of Petroleum Science and Engineering, 204, 108697, doi.org/10.1016/j.petrol.2021.108697. ##
[26]. Darvish Sarvestani, A., Rostami, B., & Mahani, H. (2021). Polymer-enhanced low-salinity brine to control in situ mixing and salt dispersion in low-salinity waterflooding, Energy & Fuels, 35(13). 10540-10550, doi.org/10.1021/acs.energyfuels.1c00871. ##
[27]. Hashmet, M. R., Onur, M., & Tan, I. M. (2014). Empirical correlations for viscosity of polyacrylamide solutions with the effects of salinity and hardness, Journal of Dispersion Science and Technology, 35(4). 510-517, doi.org/10.1080/01932691.2013.797908. ##
[28]. Lee, S., Kim, D. H., Huh, C., & Pope, G. A. (2009). Development of a comprehensive rheological property database for EOR polymers, In SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, SPE-124798-MS, doi.org/10.2118/124798-MS. ##
[29]. Atthawutthisin, N. (2012). Numerical simulation of low salinity water flooding assisted with chemicalflooding for enhanced oil recovery, NTNU Open, hdl.handle.net/11250/239817. ##
[30]. Gao, C. (2013). Viscosity of partially hydrolyzed polyacrylamide under shearing and heat, Journal of Petroleum Exploration and Production Technology, 3(3). 203-206. ##
[31]. Sorbie, K.S. (2013). Polymer-improved oil recovery, Springer Science & Business Media. ##
[32]. Lotsch, T., Muller, T., & Pusch, G. (1985). The effect of inaccessible pore volume on polymer coreflood experiments, In SPE Oilfield and Geothermal Chemistry Symposium, Society of Petroleum Engineers, doi.org/10.2118/13590-MS. ##
[33]. Ghaleh Golab, E., Riahi, S., Vatankhah-Varnosfaderani, M., & Nakhaee, A. (2019). Synthesis, introduction and study of the rheological properties of a novel polymeric surfactant and its effect on interfacial tension in different salinity, Journal of Petroleum Research, 29(98-4). 74-88, doi: 10.22078/pr.2019.3659.2670. ##
[34]. Al-Hamairi, A., & AlAmeri, W. (2020). Development of a novel model to predict HPAM viscosity with the effects of concentration, salinity and divalent content, Journal of Petroleum Exploration and Production Technology, 10(5). 1949-1963. ##
[35]. Thomas, A., Gaillard, N., & Favero, C. (2012). Some key features to consider when studying acrylamide-based polymers for chemical enhanced oil recovery, Oil & Gas Science and Technology–Revue d’IFP Energies nouvelles, 67(6). 887-902, doi.org/10.2516/ogst/2012065. ##
[36]. Kumar, S., Tiwari, R., Husein, M., Kumar, N., & Yadav, U. (2020). Enhancing the performance of HPAM polymer flooding using nano CuO/Nanoclay blend, Processes, 8(8). 907, doi.org/10.3390/pr8080907. ##
[37]. Almansour, A. O., AlQuraishi, A. A., AlHussinan, S. N., & AlYami, H. Q. (2017). Efficiency of enhanced oil recovery using polymer-augmented low salinity flooding, Journal of Petroleum Exploration and Production Technology, 7(4). 1149-1158, doi: 10.1007/s13202-017-0331-5. ##
[38]. Sheng, J. (2010). Modern chemical enhanced oil recovery: theory and practice, Gulf Professional Publishing. ##
[39]. Chhabra, R. P. (2006). Bubbles, drops, and particles in non-Newtonian fluids. CRC press. ##
[40]. Lakatos, I., Lakatos-Szabo, J., & Toth, J. (1981). Factors influencing polyacrylamide adsorption in porous media and their effect on flow behavior, Surface Phenomena in Enhanced Oil Recovery, Springer, 821-842. ##
[41]. Lee, L. T., Lecourtier, J., & Chauveteau, G. (1989). Influence of calcium on adsorption properties of enhanced oil recovery polymers, oil-field chemistry, American Chemical Society, 224-240, doi: 10.1021/bk-1989-0396.ch011. ##
[42]. Seright, R. S., Campbell, A. R., Mozley, P. S., & Han, P. (2010). Stability of partially hydrolyzed polyacrylamides at elevated temperatures in the absence of divalent cations, SPE Journal, 15(02). 341-348, doi.org/10.2118/121460-PA. ##
[43]. Rashidi, M., Sandvik, S., Blokhus, A. M., & Skauge, A. (2009). Static and dynamic adsorption of salt tolerant polymers, In European Symposium on Improved Oil Recovery, Frances, doi.org/10.3997/2214-4609.201404862. ##
[44]. Moradi-Araghi, A., & Doe, P. H. (1987). Hydrolysis and precipitation of polyacrylamides in hard brines at elevated temperatures, SPE Reservoir Engineering, 2(02). 189-198, doi.org/10.2118/13033-PA. ##
[45]. Davison, P., & Mentzer, E. (1982). Polymer flooding in North Sea reservoirs, Society of Petroleum Engineers Journal, 22(03). 353-362, doi.org/10.2118/9300-PA. ##
[46]. Toulhoat, H., & Lecourtier, J. (Eds.). (1992). Physical chemistry of colloids and interfaces in oil production: proceedings of the 6th IFP exploration and production research conference, Held in Saint-Raphaël, September 4-6, 1991, Gulf Publishing Company. ##
[47]. Mishra, S., Bera, A., & Mandal, A. (2014). Effect of polymer adsorption on permeability reduction in enhanced oil recovery, Journal of Petroleum Engineering, 2014, 1-10, doi.org/10.1155/2014/395857. ##
[48]. Ghaleh Golab, E., & Riahi, S. (2022). Evaluation of adsorption of a polymeric surfactant on reservoir rock in different conditions and its comparison with HPAM, Journal of Petroleum Research, 32(1401-1). 95-107, doi:10.22078/PR.2021.4383.2988. ##
[49]. Broseta, D., Medjahed, F., Lecourtier, J., & Robin, M. (1995). Polymer adsorption/retention in porous media: Effects of core wettability on residual oil, SPE Advanced Technology Series, 3 (01). 103–112, doi.org/10.2118/24149-PA. ##
[50]. Needham, R. B., & Doe, P. H. (1987). Polymer flooding review, Journal of Petroleum Technology, 39(12). 1503-1507, doi.org/10.2118/17140-PA. ##
[51]. Lyons, W. (2009). Working guide to reservoir engineering, Gulf Professional Publishing. ##
[52]. Piñerez T, I. D., Austad, T., Strand, S., Puntervold, T., Wrobel, S., & Hamon, G. (2016). Linking low salinity EOR effects in sandstone to pH, mineral properties and water composition, In SPE Improved Oil Recovery Conference, Society of Petroleum Engineers, doi.org/10.2118/179625-MS. ##