[1]. Supply, W. U. J. W., Programme, S. M. (2014). Progress on drinking water and sanitation: update, World Health Organization, ISBN 9789241507240. ##
[2]. Xue, Q., Pan, X., Li, X., Zhang, J. & Guo, Q. (2017). Effective enhancement of gas separation performance in mixed matrix membranes using core/shell structured multi-walled carbon nanotube/graphene oxide nanoribbons, Nanotechnology, 28, 6: 065702, DOI 10.1088/1361-6528/aa510d. ##
[3]. Huang, Z. M., Zhang, Y. Z. & Kotaki, M. (2003). A review on polymer nanofibers by electrospinning and their applications in nanocomposites, Composites Science and Technology, 63, 15: 2223-2253, doi.org/10.1016/S0266-3538(03)00178-7. ##
[4]. Buchko, C. J.,Chen, L. C., Shen, Y. & Martin, B. C. (1999). Processing and microstructural characterization of porous biocompatible protein polymer thin films, Polymer, 40, 26: 7397-7407, doi.org/10.1016/S0032-3861(98)00866-0. ##
[5]. Zahmatkeshan. M., Adel, M., Bahrami, S. & Esmaeili, F. (2019). Polymer-based nanofibers: preparation, fabrication, and applications, in Handbook of Nanofibers, Springer, 215-261. ##
[6]. Van Driel, B., Kooyman, P. J. & Van den berg, K. J. (2016). A quick assessment of the photocatalytic activity of TiO2 pigments—From lab to conservation studio! Microchemical Journal, 126: 162-171, doi.org/10.1016/j.microc.2015.11.048. ##
[7]. Su, Y., Zhang, X., Han, S., Lei, L. (2008). Preparation of highly efficient photoelectrode of N–F-codoped TiO2 nanotubes, Journal of Photochemistry and Photobiology A: Chemistry, 194, 2-3: 152-160, doi.org/10.1016/j.jphotochem.2007.08.002. ##
[8]. Tahmasebpoor, R., Babalou, A. A. & Shahrouzi, J. R. (2017). Theoretical and experimental studies on the anodic oxidation process for synthesis of self-ordering TiO2 nanotubes: Effect of TiO2 nanotube lengths on photocatalytic activity, Journal of Environmental Chemical Engineering, 5, 1: 1227-1237, doi.org/10.1016/j.jece.2017.01.036. ##
[9]. Lee, K., Hahn, R., Altomare, M. & Selli, E. (2013). Intrinsic Au decoration of growing TiO2 nanotubes and formation of a high‐efficiency photocatalyst for H2 Production, Advanced materials, 25(42): 6133-6137, doi.org/10.1002/adma.201302581. ##
[10]. Jaleh, B., Madad, M. S.,Tabrizi, M. F. & Habibi, S. (2011). UV-degradation effect on optical and surface properties of polystyrene-TiO2 nanocomposite film, Journal of the Iranian Chemical Society, 8(1): S161-S168. ##
[11]. Pasichnyk, M., Václavíková, M. & Melnyk, I. (2021). Fabrication of polystyrene-acrylic/ZnO nanocomposite films for effective removal of methylene blue dye from water, Journal of Polymer Research, 28(2): 1-15. ##
[12]. Khan, S. U. M., Al-Shahry, M. & Ingler Jr, W. B. (2002). Efficient photochemical water splitting by a chemically modified n-TiO2, Science, 297(5590): 2243-2245, doi: 10.1126/science.1075035. ##
[13]. Kwak, S. Y., Kim, S. H., Kim, S. S. (2001). Hybrid organic/inorganic reverse osmosis (RO) membrane for bactericidal anti-fouling 1, Preparation and characterization of TiO2 nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane, Environmental science and technology, 35(11): 2388-2394, doi.org/10.1021/es0017099. ##
[14]. You, S. J., Sembelante, G. U., Lu, S. C. & Damodar, R. A. (2012). Evaluation of the antifouling and photocatalytic properties of poly (vinylidene fluoride) plasma-grafted poly (acrylic acid) membrane with self-assembled TiO2, Journal of Hazardous Materials, 237: 10-19, doi.org/10.1016/j.jhazmat.2012.07.071. ##
[15]. Javed, H. M. A., Que, W., Ahmad, M. R., Ali, K., Irfan Ahmad, M., Haq, A. U. & Sharma, S. K. (2020). Perspective of nanomaterials in the performance of solar cells, Solar Cells: From Materials to Device Technology, Springer, 25-54. ##
[16]. Chen, H. Y., Zhang, T. L., Fan. J., Kuang, D. B. & Su, C. Y. (2013). Electrospun hierarchical TiO2 nanorods with high porosity for efficient dye-sensitized solar cells, ACS applied Materials and Interfaces, 5(18): 9205-9211, doi.org/10.1021/am402853q. ##
[17]. Dhandole, L. K., Mahadik, M. A., Kim, S. G., Chung, H. S., Seo, Y. S., Cho, M., Ryu, J. H. & Jang, J. S. (2017). Boosting photocatalytic performance of inactive rutile TiO2 nanorods under solar light irradiation: synergistic effect of acid treatment and metal oxide co-catalysts, ACS applied materials & interfaces, 9, 28: 23602-23613, doi.org/10.1021/acsami.7b02104. ##