استفاده از الگوریتم بهبود یافته بهینه‌سازی باران جهت شبیه‌سازی حرکت دوغاب سیال در شکاف و ماتریکس

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی معدن، دانشکده گروه مهندسی، دانشگاه کاشان، ایران

چکیده

الگوریتم بهینه‌سازی باران (ROA) یک الگوریتم مبتنی بر جمعیت می‌باشد که با شبیه‌سازی حرکت قطرات باران به یافتن جواب بهینه برای مسائل پیچیده بهینه‌سازی می‌پردازد. این الگوریتم با حرکت دادن قطرات باران به‌سمت نقاط کمترین با توجه به قطر قطرات باران، قادر است با سرعت و دقت قابل قبولی نقاط کمترین یا بیشترین یک تابع یا مسأله بهینه‌سازی را پیدا کند. جهت بهبود قابلیت جستجو و اکتشاف در این الگوریتم، یک جستجوی تصادفی پیش از شروع به حل مسأله توسط این الگوریتم به این روش اضافه شد که این موضوع از بمب‌های خوشه‌ای الهام گرفته شده است. بدین ترتیب قبل از شروع به بهینه‌سازی توسط ROA، ابتدا نقاط تصادفی در اطراف این قطره باران انتخاب می‌شود و جستجو از نقطه‌ای شروع می‌شود که مقدار کمتری داشته باشد. به همین علت نام الگوریتم جدید به الگوریتم بهبود یافته بهینه‌سازی باران IROA تغییر یافت. کارایی بهینه‌ساز پیشنهادی از طریق بهینه‌سازی یک مسأله شبیه‌سازی در مهندسی معدن (شبیه‌سازی حرکت دوغاب سیمان در ماتریکس و شکاف) آزمایش شد و عملکرد آن با چندین الگوریتم فراابتکاری شناخته شده مقایسه شد. نتایج نشان می‌دهد که IROA قادر است با ارائه سرعت همگرایی سریع‌تر و همچنین کارآمدتر در مقایسه با سایر بهینه‌سازهای موفق منجر به‌دست‌یابی به به جواب‌های دقیق‌تر در مسائل پیچیده بهینه‌سازی شود.

کلیدواژه‌ها


عنوان مقاله [English]

Using the Improved Rain Optimization Algorithm to Simulate the Movement of Two Dominant Fluids in the Fracture and the Matrix

نویسندگان [English]

  • Hojjat Nouri
  • Ali Aali Anvari
Department of Mining Engineering, Faculty of Engineering, University of Kashan, Iran
چکیده [English]

Rain Optimization Algorithm (ROA) is a population-based algorithm that finds the optimal solution for complex optimization problems by simulating the movement of raindrops. By moving the raindrops towards the minimum points according to the diameter of the raindrops, this algorithm is able to find the minimum or maximum points of a function or optimization problem with acceptable speed and accuracy. In order to improve the search and discovery capabilities of this algorithm, a random search was added before starting to solve the problem by this algorithm, which is inspired by cluster bombs. Thus, before starting to optimize by ROA, random points around this raindrop are first selected and the search starts from a point that has a smaller value. For this reason, the name of the new algorithm was changed to the improved IROA rain optimization algorithm. The effectiveness of the proposed optimizer was tested through the optimization of a simulation problem in mining engineering (simulation of the movement of cement slurry in matrix and fractures) and its performance was compared with several well-known meta-heuristic algorithms. The results show that IROA is able to achieve more accurate solutions in complex optimization problems by providing faster and more efficient convergence speed compared to other successful optimizers.

کلیدواژه‌ها [English]

  • Rain Optimization Algorithm
  • Meta-heuristic Algorithm
  • Cement Slurry
  • Convergence Speed
  • Matrix
[1]. Dokeroglu, T., Sevinc, E., Kucukyilmaz, T., & Cosar, A. (2019). A survey on new generation metaheuristic algorithms, Computers & Industrial Engineering, 137, 106040, 2019/11/01/ 2019, doi: https://doi.org/10.1016/j.cie.2019.106040. ##
[2]. Magnusson, J., & Nilsson, J. (2018). Project matching application framework using metaheuristic algorithms, 1st edition, Chalmers University of Technology, Gothenburg, Sweden, 1-83. ##
[3]. شکیبا س. و دولتی ارده‌جانی ف. (2023). استفاده از روش‌های بهینه‌یابی فراابتکاری جستجوی گرانشی، ازدحام ذرات و ترکیب آن‌ها در مدل‌سازی شبکه شکستگی, پژوهش نفت، 33( 1402-1): 107-100، doi: 10.22078/pr.2022.4960.3210.  . ##
[4]. Goldberg, D. E. (1989). Genetic algorithms in search, Optimization, and MachineLearning, doi.org/10.11517/jjsai.7.1_168. ##
[5]. Storn, R., & Price, K. (1997). Differential evolution – a simple and efficient heuristic for global optimi zation over continuous spaces, journal of global optimization, 11(4): 341-359, 1997/12/01 1997, doi: 10.1023/A:1008202821328. ##
[6]. Banzhaf, W., Nordin, P., Keller, R. E., & Francone, F. D. (1998). Genetic programming: an introduction, Morgan Kaufmann Publishers San Francisco. ##
[7]. F. Glover and M. Laguna, (1998). Tabu Search, in Handbook of Combinatorial Optimization, 1–3, D.-Z. Du and P. M. Pardalos Eds. Boston, MA: Springer US, 2093-2229. ##
[8]. Marques-Silva, J. P., & Sakallah, K. A. (1999). A search algorithm for propositional satisfiability, IEEE Transactions on Computers, 48(5): 506-521, 1999, doi: 10.1109/12.769433. ##
[9]. Lourenço, H. R., Martin, O. C., & Stützle, T. (2003). Iterated Local Search, in Handbook of Metaheuristics, F. Glover and G. A. Kochenberger Eds. Boston, MA: Springer US, 320-353. ##
[10]. Eusuff, M. M., & Lansey, K. E. (2003). Optimization of water distribution network design using the shuffled frog leaping algorithm, Journal of Water Resources planning and management, 129(3): 210-225, doi.org/10.1061/(ASCE)0733-9496(2003)129:3(21. ##
[11]. Wei, Y., & Qiqiang, L. (2004). Survey on particle swarm optimization algorithm, Engineering Science, 5(5):  87-94. ##
[12]. Martí, R., Laguna, M., & Glover, F. (2006). Principles of scatter search, European Journal of Operational Research, 169(2): 359-372, doi: https://doi.org/10.1016/j.ejor.2004.08.004. ##
[13]. Dorigo, M., Birattari, M., & Stutzle, T. (2006). Ant colony optimization, IEEE computational intelligence magazine, 1(4): 28-39, doi: 10.1109/MCI.2006.329691. ##
[14]. Moazzeni, A. R., & Khamehchi, E. (2020). Rain optimization algorithm (ROA): A new metaheuristic method for drilling optimization solutions, Journal of Petroleum Science and Engineering, 195, 107512, doi.org/10.1016/j.petrol.2020.107512. ##
[15]. Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm, Advances in Engineering Software, 95, 51-67, doi: https://doi.org/10.1016/j.advengsoft.2016.01.008. ##
[16]. Cheng, M. Y., & Prayogo, D. (2014). Symbiotic organisms search: A new metaheuristic optimization algorithm, Computers & Structures, 139, 98-112, doi: https://doi.org/10.1016/j.compstruc.2014.03.007. ##
[17]. Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey Wolf Optimizer, Advances in Engineering Software, 69, 46-61, doi: https://doi.org/10.1016/j.advengsoft.2013.12.007. ##
[18]. Cuevas, E., Cienfuegos, M., Zaldívar, D., & Pérez-Cisneros, M. (2013). A swarm optimization algorithm inspired in the behavior of the social-spider, Expert Systems with Applications, 40, (16): doi: https://doi.org/10.1016/j.eswa.2013.05.041. ##
[19]. Rao, R. V., Savsani, V. J., & Vakharia, D. P. (2011). Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems, Computer-Aided Design, 43(3): 303-315, doi: https://doi.org/10.1016/j.cad.2010.12.015. ##
[20]. Yang, X. S. (2010). Firefly algorithm, stochastic test functions and design optimisation, International journal of bio-inspired computation, 2, (2): 78-84, doi.org/10.1504/IJBIC.2010.032124. ##
[21]. Yang, X. S. (2010). A new metaheuristic bat-inspired algorithm, in nature inspired cooperative strategies for optimization (NICSO), Berlin, Heidelberg: Springer Berlin Heidelberg, 65-74. ##
[22]. Das, S., Biswas, A., Dasgupta, S., & Abraham, A. (2009). Bacterial foraging optimization algorithm: theoretical foundations, analysis, and applications, in foundations of computational intelligence, 3, Global Optimization, A. Abraham, A.-E. Hassanien, P. Siarry, and A. Engelbrecht Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 23-55. ##
[23]. Simon, D. (2008). Biogeography-based optimization, IEEE Transactions on Evolutionary Computation, 12, (6): 702-713, doi: 10.1109/TEVC.2008.919004. ##
[24]. Karaboga, D. (2005). An idea based on honey bee swarm for numerical optimization, Citeseer, Technical Report-tr06, Erciyes University, Engineering Faculty, Computer Engineering Department. ##
[25]. Ebrahimi, A., & Khamehchi, E. (2016). Sperm whale algorithm: an effective metaheuristic algorithm for production optimization problems, Journal of Natural Gas Science and Engineering, 29, 211-222, doi.org/10.1016/j.jngse.2016.01.001. ##
[26]. Ge, J. (2006). Development and prospect of chemical grouting techniques, Chinese Journal of Rock Mechanics and Engineering, 25(3): 384-3. ##
[27]. Li, S., Liu, R., Zhang, Q., & Zhang, X. (2016). Protection against water or mud inrush in tunnels by grouting: a review, Journal of Rock Mechanics and Geotechnical Engineering, 8(5): 753-766, doi.org/10.1016/j.jrmge.2016.05.002. ##