[1]. Dokeroglu, T., Sevinc, E., Kucukyilmaz, T., & Cosar, A. (2019). A survey on new generation metaheuristic algorithms, Computers & Industrial Engineering, 137, 106040, 2019/11/01/ 2019, doi: https://doi.org/10.1016/j.cie.2019.106040. ##
[2]. Magnusson, J., & Nilsson, J. (2018). Project matching application framework using metaheuristic algorithms, 1st edition, Chalmers University of Technology, Gothenburg, Sweden, 1-83. ##
[3]. شکیبا س. و دولتی اردهجانی ف. (2023). استفاده از روشهای بهینهیابی فراابتکاری جستجوی گرانشی، ازدحام ذرات و ترکیب آنها در مدلسازی شبکه شکستگی, پژوهش نفت، 33( 1402-1): 107-100، doi: 10.22078/pr.2022.4960.3210. . ##
[4]. Goldberg, D. E. (1989). Genetic algorithms in search, Optimization, and MachineLearning, doi.org/10.11517/jjsai.7.1_168. ##
[5]. Storn, R., & Price, K. (1997). Differential evolution – a simple and efficient heuristic for global optimi zation over continuous spaces, journal of global optimization, 11(4): 341-359, 1997/12/01 1997, doi: 10.1023/A:1008202821328. ##
[6]. Banzhaf, W., Nordin, P., Keller, R. E., & Francone, F. D. (1998). Genetic programming: an introduction, Morgan Kaufmann Publishers San Francisco. ##
[7]. F. Glover and M. Laguna, (1998). Tabu Search, in Handbook of Combinatorial Optimization, 1–3, D.-Z. Du and P. M. Pardalos Eds. Boston, MA: Springer US, 2093-2229. ##
[8]. Marques-Silva, J. P., & Sakallah, K. A. (1999). A search algorithm for propositional satisfiability, IEEE Transactions on Computers, 48(5): 506-521, 1999, doi: 10.1109/12.769433. ##
[9]. Lourenço, H. R., Martin, O. C., & Stützle, T. (2003). Iterated Local Search, in Handbook of Metaheuristics, F. Glover and G. A. Kochenberger Eds. Boston, MA: Springer US, 320-353. ##
[10]. Eusuff, M. M., & Lansey, K. E. (2003). Optimization of water distribution network design using the shuffled frog leaping algorithm, Journal of Water Resources planning and management, 129(3): 210-225, doi.org/10.1061/(ASCE)0733-9496(2003)129:3(21. ##
[11]. Wei, Y., & Qiqiang, L. (2004). Survey on particle swarm optimization algorithm, Engineering Science, 5(5): 87-94. ##
[12]. Martí, R., Laguna, M., & Glover, F. (2006). Principles of scatter search, European Journal of Operational Research, 169(2): 359-372, doi: https://doi.org/10.1016/j.ejor.2004.08.004. ##
[13]. Dorigo, M., Birattari, M., & Stutzle, T. (2006). Ant colony optimization, IEEE computational intelligence magazine, 1(4): 28-39, doi: 10.1109/MCI.2006.329691. ##
[14]. Moazzeni, A. R., & Khamehchi, E. (2020). Rain optimization algorithm (ROA): A new metaheuristic method for drilling optimization solutions, Journal of Petroleum Science and Engineering, 195, 107512, doi.org/10.1016/j.petrol.2020.107512. ##
[15]. Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm, Advances in Engineering Software, 95, 51-67, doi: https://doi.org/10.1016/j.advengsoft.2016.01.008. ##
[16]. Cheng, M. Y., & Prayogo, D. (2014). Symbiotic organisms search: A new metaheuristic optimization algorithm, Computers & Structures, 139, 98-112, doi: https://doi.org/10.1016/j.compstruc.2014.03.007. ##
[17]. Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey Wolf Optimizer, Advances in Engineering Software, 69, 46-61, doi: https://doi.org/10.1016/j.advengsoft.2013.12.007. ##
[18]. Cuevas, E., Cienfuegos, M., Zaldívar, D., & Pérez-Cisneros, M. (2013). A swarm optimization algorithm inspired in the behavior of the social-spider, Expert Systems with Applications, 40, (16): doi: https://doi.org/10.1016/j.eswa.2013.05.041. ##
[19]. Rao, R. V., Savsani, V. J., & Vakharia, D. P. (2011). Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems, Computer-Aided Design, 43(3): 303-315, doi: https://doi.org/10.1016/j.cad.2010.12.015. ##
[20]. Yang, X. S. (2010). Firefly algorithm, stochastic test functions and design optimisation, International journal of bio-inspired computation, 2, (2): 78-84, doi.org/10.1504/IJBIC.2010.032124. ##
[21]. Yang, X. S. (2010). A new metaheuristic bat-inspired algorithm, in nature inspired cooperative strategies for optimization (NICSO), Berlin, Heidelberg: Springer Berlin Heidelberg, 65-74. ##
[22]. Das, S., Biswas, A., Dasgupta, S., & Abraham, A. (2009). Bacterial foraging optimization algorithm: theoretical foundations, analysis, and applications, in foundations of computational intelligence, 3, Global Optimization, A. Abraham, A.-E. Hassanien, P. Siarry, and A. Engelbrecht Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 23-55. ##
[23]. Simon, D. (2008). Biogeography-based optimization, IEEE Transactions on Evolutionary Computation, 12, (6): 702-713, doi: 10.1109/TEVC.2008.919004. ##
[24]. Karaboga, D. (2005). An idea based on honey bee swarm for numerical optimization, Citeseer, Technical Report-tr06, Erciyes University, Engineering Faculty, Computer Engineering Department. ##
[25]. Ebrahimi, A., & Khamehchi, E. (2016). Sperm whale algorithm: an effective metaheuristic algorithm for production optimization problems, Journal of Natural Gas Science and Engineering, 29, 211-222, doi.org/10.1016/j.jngse.2016.01.001. ##
[26]. Ge, J. (2006). Development and prospect of chemical grouting techniques, Chinese Journal of Rock Mechanics and Engineering, 25(3): 384-3. ##
[27]. Li, S., Liu, R., Zhang, Q., & Zhang, X. (2016). Protection against water or mud inrush in tunnels by grouting: a review, Journal of Rock Mechanics and Geotechnical Engineering, 8(5): 753-766, doi.org/10.1016/j.jrmge.2016.05.002. ##