[1]. Crawford, P., Biglarbigi, K., Dammer, A., & Knaus, E. (2008). Advances in world oil-shale production technologies. In SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, SPE-116570, doi.org/10.2118/116570-MS.##
[2]. Dyni, J. R. (2006). Geology and resources of some world oil-shale deposits, Oil Shale, Scientific Investigations Report 2005–5294, 1-47. ##
[3]. Qian, J., Wang, J., & Li, S. (2003). Oil shale development in China, Oil Shale, 20(3; SUPP), 356-359, doi.org/10.1016/j.coal.2009.02.001. ##
[4]. Speight, J. G. (2012). Shale oil production processes. Gulf Professional Publishing. ##
[5]. Qian, Y., Yang, Q., Zhang, J., Zhou, H., & Yang, S. (2014). Development of an integrated oil shale refinery process with coal gasification for hydrogen production, Industrial & Engineering Chemistry Research, 53(51): 19970-19978, doi.org/10.1021/ie5024436. ##
[6]. Lan, X., Luo, W., Song, Y., Zhou, J., & Zhang, Q. (2015). Effect of the temperature on the characteristics of retorting products obtained by yaojie oil shale pyrolysis, Energy & Fuels, 29(12): 7800-7806, doi.org/10.1021/acs.energyfuels.5b01645. ##
[7]. Wang, Z., Deng, S., Gu, Q., Cui, X., Zhang, Y., Wang, H. (2014). Subcritical water extraction of Huadian oil shale under isothermal condition and pyrolysate analysis, Energy & fuels, 28(4): 2305-2313, doi.org/10.1021/ef5000062. ##
[8]. Zhao, L., Yang, D., Kang, Z. Q., & Zhao, Y. S. (2015). Gas generation law of oil shale heated by superheated steam, Journal of Taiyuan University of Technology, 46(3): 323-326. ##
[9]. Motasemi, F., & Afzal, M. T. (2013). A review on the microwave-assisted pyrolysis technique, Renewable and Sustainable Energy Reviews, 28, 317-330, doi.org/10.1016/j.rser.2013.08.008. ##
[10]. Mutyala, S., Fairbridge, C., Paré, J. J., Bélanger, J. M., Ng, S., & Hawkins, R. (2010). Microwave applications to oil sands and petroleum, A review, Fuel Processing Technology, 91(2): 127-135, doi.org/10.1016/j.fuproc.2009.09.009. ##
[11]. Chia-lun, J. H. (1979). Online measurements of the fast-changing dielectric constant in oil shale due to high-power microwave heating, IEEE Transactions on Microwave Theory and Techniques, 27(1): 38-43, doi:10.1109/TMTT.1979.1129555. ##
[12]. Qing, W., Liang, Z., Jingru, B., Hongpeng, L., & Shaohua, L. (2011). The influence of microwave drying on physicochemical properties of liushuhe oil shale. Oil Shale, 28(1), doi: 10.3176/oil.2011.1.04. ##
[13]. Meng, Y., Yan, Y., Jiang, P., Zhang, M., Oladejo, J., Wu, T., & Pang, C. H. (2020). Investigation on breakage behaviour of oil shale with high grinding resistance: A comparison between microwave and conventional thermal processing, Chemical Engineering and Processing-Process Intensification, 107909, doi.org/10.1016/j.cep.2020.107909. ##
[14]. Chen, J. H., Georgi, D., Liu, H. H., & Lai, B. (2015). Fracturing tight rocks by elevated pore-water pressure using microwaving and its applications, In SPWLA 56th Annual Logging Symposium, Society of Petrophysicists and Well-Log Analysts. ##
[15]. Jesch, R. L., Mclaughlin, R. H. (1984). Dielectric measurements of oil shale as functions of temperature and frequency. IEEE Transactions on Geoscience and Remote Sensing, (2): 99-105, doi: 10.1109/TGRS.1984.350600. ##
[16]. Hakala, J. A., Stanchina, W., Soong, Y., & Hedges, S. (2011). Influence of frequency, grade, moisture and temperature on Green River oil shale dielectric properties and electromagnetic heating processes, Fuel Processing Technology, 92(1): 1-12, doi.org/10.1016/j.fuproc.2010.08.016. ##
[17]. Miller, R., Wang, F. D., DuBow, J., & Collins, F. (1978). Mechanical and thermal properties of oil shale at elevated temperatures, In Proc. 11th Oil Shale Symposium, Colorado School of Mines Press, Golden, 135-146. ##
[18]. Rajeshwar, K., DuBow, J., & Thapar, R. (1980). Radio-frequency electrical properties of Green River oil shales, Canadian Journal of Earth Sciences, 17(9): 1315-1321, doi.org/10.1139/e80-138. ##
[19]. Chanaa, M. B., Lallemant, M., Mokhlisse, A. (1994). Pyrolysis of Timahdit, Morocco, oil shales under microwave field. Fuel, 73(10), 1643-1649, doi.org/10.1016/0016-2361(94)90145-7. ##
[20]. Ala, M. A., Kinghorn, R.R.F., & Rahman, M. (1980). Organic geochemistry and source rock characteristics of the Zagros Petroluem Province, Southwest Iran, Journal of Petroleum Geology, 3(1), 61-89, doi.org/10.1111/j.1747-5457. 1980.tb01004. x. ##
[21]. Shekarifard, A., Darybandeh, M., Rashidi, M., Hajian, M., & Roth,J. (2019). Petroleum geochemical properties of the oil shales from the Early Cretaceus Garau Formation, Qalikuh, Zagrros Mountains, Iran, International Journal of Coal Geology, 206, 1-18, doi.org/10.1016/j.coal.2019.03.005. ##
[22]. Mahbobipour, H., Kamali, M.R., & Solgi, A. (2016). Organic geochemistry and petroleum potential of Early Cretaceous Garau Formation in central part of Lorestan zone, Northwest of Zagros, Iran, Marine and Petroleum Geology, 77, 991–1009, doi.org/10.1016/j.marpetgeo.2016.05.004. ##
[23]. Rasouli, A., Shekarifard, A., Jalali Farahani, F., Verşan Kök, M., Daryabandeh, M., & Rashidi, M. (2015). Occurrence of organic-rich deposits (Middle Jurassic to Lower Cretaceous) from Qalikuh locality, Zagros Basin, South-West of Iran: a possible oil shale resource, International Journal of Coal Geology, 143, 34–42, doi.org/10.1016/j.coal.2015.03.010. ##
[24]. Sarfi, M., Ghasemi-Nejad, E., Mahanipour, A., Yazdi-Moghadam, M., & Sharifi, M. (2014). Integrated biostratigraphy and geochemistry of the lower Cretaceous Radiolarian Flood Zone of the base of the Garau Formation, Northwest of Zagros Mountains, Iran, Arabian Journal of Geosciences, 8(9): 7245–7255. ##
[25]. Williams, P. T., & Ahmad, N. (1999). Influence of process conditions on the pyrolysis of Pakistani oil shales, Fuel, 78(6): 653-662, doi.org/10.1016/S0016-2361(98)00190-2. ##
[26]. Liang, T., Zou, Y. R., Zhan, Z. W., Lin, X. H., & Shi, J. (2020). An evaluation of kerogen molecular structures during artificial maturation. Fuel, 265, 116979, doi.org/10.1016/j.fuel.2019.116979. ##
[27]. Huang, Y., Han, X., & Jiang, X. (2016). A tga-ms investigation of the effect of heating rate and mineral matrix on the pyrolysis of kerogen in oil shale. Oil Shale, 33(2): doi: 10.3176/oil.2016.2.03. ##
[28]. Ishiwatari, M., Ishiwatari, R., Sakashita, H., Tatsumi, T., & Tominaga, H. O. (1991). Pyrolysis of chlorophyll a after preliminary heating at a moderate temperature: implications for the origin of prist-1-ene on kerogen pyrolysis, Journal of Analytical and Applied Pyrolysis, 18(3-4), 207-218, doi.org/10.1016/0165-2370(91)87002-4. ##
[29]. Campbell, J. H., Gallegos, G., & Gregg, M. (1980). Gas evolution during oil shale pyrolysis. 2. Kinetic and stoichiometric analysis. Fuel, 59(10), 727-732, doi.org/10.1016/0016-2361(80)90027-7. ##
[30]. Wang, S., Liu, J., Jiang, X., Han, X., & Tong, J. (2013). Effect of heating rate on products yield and characteristics of non-condensable gases and shale oil obtained by retorting Dachengzi oil shale. Oil Shale, 30(1): 27, doi: 10.3176/oil.2013.1.04. ##
[31]. Nazzal, J. M. (2002). Influence of heating rate on the pyrolysis of Jordan oil shale, Journal of Analytical and Applied Pyrolysis, 62(2): 225-238, doi.org/10.1016/S0165-2370(01)00119-X. ##
[32]. Ping’an, P., Yan, Q., Hui, Z., Dayong, L., Shanwen, Z., Fenggui, S., & Zheng, L. (2008). Kinetics of kerogen transformation by heating in closed system, Marine Origin Petroleum Geology, 2. ##
[33]. Freund, H., & Kelemen, S. R. (1989). Low-temperature pyrolysis of Green River kerogen. AAPG Bulletin, 73(8): 1011-1017, doi.org/10.1306/44B4A2D5-170A-11D7-8645000102C1865D. ##
[34]. Kobraei, M., Rabbani, A.R., & Taati, F. (2017). Source rock characteristics of the Early Cretaceous Garau and Gadvan formations in the western Zagros Basin–southwest Iran, Journal of Petroleum Exploration and Production Technology, doi.org/10.1007/s13202-017-0362-y. ##
[35]. Taheri-Shakib, J., Shekarifard, A., & Naderi, H. (2018d). Characterization of the wax precipitation in Iranian crude oil based on Wax Appearance Temperature (WAT): Part 1. The influence of electromagnetic waves, Journal of Petroleum Science and Engineering, 161, 530-540, doi.org/10.1016/j.petrol.2017.12.012. ##
[36]. Taheri-Shakib, J., Shekarifard, A., & Naderi, H. (2017a). The experimental investigation of effect of microwave and ultrasonic waves on the key characteristics of heavy crude oil, Journal of Analytical and Applied Pyrolysis, 128, 92-101, doi.org/10.1016/j.jaap.2017.10.021. ##
[37]. Taheri-Shakib, J., Shekarifard, A., & Naderi, H. (2017b). The experimental study of effect of microwave heating time on the heavy oil properties: Prospects for heavy oil upgrading, Journal of Analytical and Applied Pyrolysis, 128, 176-186, doi.org/10.1016/j.jaap.2017.10.012. ##
[38]. Taheri-Shakib, J., Shekarifard, A., Naderi, H., & Hosseini, S. A. (2017c). Effect of microwave irradiation on wax and asphaltene content of heavy crude oil. In 79th EAGE conference and exhibition, 2017(1): 1-5, European Association of Geoscientists & Engineers, doi.org/10.3997/2214-4609.201700699. ##
[39]. Taheri-Shakib, J., Shekarifard, A., & Naderi, H. (2018e). Heavy crude oil upgrading using nanoparticles by applying electromagnetic technique, Fuel, 232, 704-711, doi.org/10.1016/j.fuel.2018.06.023. ##
[40]. Taheri-Shakib, J., Shekarifard, A., & Naderi, H. (2018f). The influence of electromagnetic waves on the gas condensate characterisation: experimental evaluation, Journal of Petroleum Science and Engineering, 166, 568-576, doi.org/10.1016/j.petrol.2018.03.078. ##
[41]. Taheri-Shakib, J., Shekarifard, A., & Naderi, H. (2018a). Experimental investigation of comparing electromagnetic and conventional heating effects on the unconventional oil (heavy oil) properties: Based on heating time and upgrading, Fuel, 228, 243-253, doi.org/10.1016/j.fuel.2018.04.141. ##
[42]. Worner, H. K., & Burton, P. (1989). Pyrolysis of oil containing shale using microwave irradiation, Australian Patent, (32524/89). ##
[43]. Taheri-Shakib, J., & Kantzas, A. (2021). A comprehensive review of microwave application on the oil shale: Prospects for shale oil production, Fuel, 305, 121519, doi.org/10.1016/j.fuel.2021.121519. ##
[44]. Bridges, J. E., Taflove, A., & Snow, R. H. (1978). Net energy recoveries for the in-situ dielectric heating of oil shale, In Proc., 11th Oil Shale Symposium, Golden, Colorado, 311-330. ##
[45]. Baker-Jarvis, J., & Inguva, R. (1988). Dielectric heating of oil shales by monopoles and modified coaxial applicators, Journal of Microwave Power and Electromagnetic Energy, 23(3), 160-170, doi.org/10.1080/08327823.1988.11688051. ##
[46]. Taheri-Shakib, J., Shekarifard, A., Naderi, H. (2018g). Analysis of the asphaltene properties of heavy crude oil under ultrasonic and microwave irradiation. Journal of Analytical and Applied Pyrolysis, 129, 171-180, doi.org/10.1016/j.jaap.2017.11.015. ##
[47]. Reddy, B. R., Ashok, I., & Vinu, R. (2020). Preparation of carbon nanostructures from medium and high ash Indian coals via microwave-assisted pyrolysis, Advanced Powder Technology, 31(3): 1229-1240, doi.org/10.1016/j.apt.2019.12.017. ##
[48]. Wang, C. C., Noble, R. D. (1983). Composition and kinetics of oil generation from non-isothermal oil shale retorting. Fuel, 62(5): 529-533, doi.org/10.1016/0016-2361(83)90221-1. ##
[49]. Noble, R. D., Harris, H. G., & Tucker, W. F. (1981). Isothermal oil shale pyrolysis. 2. Kinetics of product formation and composition at various pressures, Fuel, 60(7): 573-576, doi.org/10.1016/0016-2361(81)90156-3. ##
[50]. Zojaji, I., Esfandiarian, A., & Taheri-Shakib, J. (2021). Toward molecular characterization of asphaltene from different origins under different conditions by means of FT-IR spectroscopy, Advances in Colloid and Interface Science, 289, 102314, doi.org/10.1016/j.cis.2020.102314. ##