[1]. Nobarzad, M. J., Tahmasebpoor, M., Imani, M., Pevida, C., & Heris, S. Z. (2021). Improved CO2 adsorption capacity and fluidization behavior of silica-coated amine-functionalized multi-walled carbon nanotubes, Journal of Environmental Chemical Engineering 9: 105786, doi.org/10.1016/j.jece.2021.105786. ##
[2]. Oschatz, M., Antonietti, M. (2018). A search for selectivity to enable CO2 capture with porous adsorbents, Energy and Environmental Science, 11: 57-70, doi: 10.1039/C7EE02110K. ##
[3]. Erans, M., Manovic, V., & Anthony, E. J. (2016), Calcium looping sorbents for CO2 capture, Applied Energy 180: 722-742, doi.org/10.1016/j.apenergy.2016.07.074. ##
[4]. Heidari, M., Tahmasebpoor, M., Mousavi, S. B., & Pevida, C. (2021). CO2 capture activity of a novel CaO adsorbent Stabilized with (ZrO2+Al2O3+CeO2)-Based Additive under mild and realistic calcium looping conditions, Journal of CO2 Utilization 53, 101747, doi.org/10.1016/j.jcou.2021.101747. ##
[5]. Valverde, J. M., Jimenez, P. E. S., & Perez-Maqueda, L. A. (2014). High and stable CO2 capture capacity of natural limestone at Ca-looping conditions by heat pretreatment and recarbonation synergy, Fuel, 123: 79-85, doi.org/10.1016/j.fuel.2014.01.045. ##
] 6[. مالکی، ن.، مطهری، ک. (1398) عملکرد جذب دی اکسید کربن در محلول پی زایلیلن دی آمین: اندازهگیری آزمایشگاهی و مدلسازی با استفاده از تئوری پاسخ سطح، پژوهش نفت، 29(104): 145-135. ##
[7]. Nobarzad, M. J., Tahmasebpour, M., Heidari, M., & Pevida, C. (2022). Theoretical and experimental study on the fluidity performance of hard-to-fluidize carbon nanotubes-based CO2 capture sorbents, Frontiers of Chemical Science and Engineering, 1-16. ##
[8]. Nie, L., Mu, Y., Jin, J., Chen, J., & Mi, J. (2018). Recent developments and consideration issues in solid adsorbents for CO2 capture from flue gas, Chinese Journal of Chemical Engineering, 26, 2303-2317, doi.org/10.1016/j.cjche.2018.07.012. ##
[9]. Troya, J. J. A., Jimenez, P. E. S., Perejón, A., Valverde, J. M., Chacartegui, R., Maqueda, L. A. P. (2020). Calcium-looping performance of biomineralized CaCO3 for CO2, Capture and Thermochemical Energy Storage, Industrial and Engineering Chemistry Research, 59: 12924-12933, doi.org/10.1021/acs.iecr.9b05997. ##
[10]. Ives, M., Mundy, R. C., Fennell, P. S., Davidson, J. F., Dennis, J. S., & Hayhurst, A. N. (2008). Comparison of different natural sorbents for removing CO2 from combustion gases, as studied in a bench-scale fluidized bed, Energy Fuels, 22: 3852-3857, doi.org/10.1021/ef800417v. ##
[11]. Azimi, B., Tahmasebpoor, M., Jimenez, P. E. S., Perejon, A., & Valverde, J. M. (2019). Multicycle CO2 capture activity and fluidizability of Al-based synthesized CaO sorbents, Chemical engineering journal, 358: 679-690, doi.org/10.1016/j.cej.2018.10.061. ##
[12]. Zhang, Y., Liu, W., Yang, X., Sun, J., Hu, Y., & Xu, M. (2016). Incorporation of CaO in inert solid matrix by spray drying sol mixture of precursors, RSC Advances 6: 57658–57666, doi.org/10.1039/C6RA10958F. ##
[13]. Grasa, G., Murillo, R., Alonso, M., & Abanades, J. C. (2009). Application of the random pore model to the carbonation cyclic reaction, AIChE 55, 1246–55, doi.org/10.1002/aic.11746. ##
[14]. Imani, M., Tahmasebpoor, M., Jiménez, P. E. S., Valverde, J. M., & Moreno, V. (2022). A novel, green, cost-effective and fluidizable SiO2-decorated calcium-based adsorbent recovered from eggshell waste for the CO2 capture process, Separation and Purification Technology, 35, 122523, doi.org/10.1016/j.seppur.2022.122523. ##
[15]. Hughes, R. W., Lu, D,. Anthony, E. J., & Wu, Y. (2004). Improved long-term conversion of limestone-derived sorbents for in situ capture of CO2 in a fluidized bed combustor, Industerial and Enginerring Chemistry Research, 43, 5529-5539, doi.org/10.1021/ie034260b. ##
[16]. Manovic, V., Anthony, E. J. (2008). Thermal activation of CaO-Based Sorbent and Self-Reactivation during CO2 Capture Looping Cycles, Environmental Science and Technology, 42: 4170–4174, doi.org/10.1021/es800152s. ##
[17]. Stendardo, S., Foscolo, P. U. (2009). Carbon dioxide capture with dolomite: a model for gas-solid reaction within the grains of a particulate sorbent, Chemical Engineering Science, 64, 2343–2352, doi.org/10.1016/j.ces.2009.02.009. ##
[18]. Koirala, R., Reddy, G., Lee, J. Y., & Smirniotis, P. G. (2014). Influence of foreign metaldopants on the durability and performance of Zr/Ca sorbents during high temperature CO2 Capture, Seperation Science Technology, 49: 47–54, doi.org/10.1080/01496395.2013.836672. ##
[19]. Li, Y., Zhao, C., Chen, H., Duan, L., Chen, X. (2010). Cyclic CO2 capture Behavior of KMnO4-Doped CaO-Based Sorbent, Fuel, 89: 642-649, doi.org/10.1016/j.fuel.2009.08.041. ##
[20]. Heidari, M., Tahmasebpoor, M., Antzaras, A., & Lemonidou, A. A. (2020). CO2 capture and fluidity performance of CaO-based sorbents: effect of Zr, Al and Ce additives in tri-, bi- and mono-metallic configurations, Process Safety and Environmental Protection 144: 349-365, doi.org/10.1016/j.psep.2020.07.041. ##
[21]. Heidari, M., Mousavi, S. B., Rahmani, F., Clough, P. T., & Ozmen, S. (2022). The novel carbon nanotube-assisted development of highly porous CaZrO3-CaO xerogel with boosted sorption activity towards high-temperature cyclic CO2 capture, Energy conversion and management, 274: 116461, doi.org/10.1016/j.enconman.2022.116461. ##
[22]. Mousavi, S. B., Heidari, M., Rahmani, F., Sene, R. A., Clough, P. T., & Ozmen, S. (2023). Highly robust ZrO2-stabilized CaO nanoadsorbent prepared via a facile one-pot MWCNT-template method for CO2 capture under realistic calcium looping conditions, Journal of cleaner production, 384: 135579. doi.org/10.1016/j.jclepro.2022.135579. ##
[23]. Sun, R., Xiao, R., & Ye, J. (2020). Kinetic analysis about the CO2 Capture Capacity of Lime Mud from Paper Mill in Calcium Looping Process, Energy Science Engineering, 8: 4014-4024, doi.org/10.1002/ese3.792. ##
[24]. Miranda-Pizarro, J., Perejón, A., Valverde, J. M., Sánchez-Jiménez, P. E., & Pérez-Maqueda, L. A. (2016) On the Use of Steel Slag for CO2 Capture at Realistic Calcium Looping Conditions, RSC Advances 6: 37656–37663, doi: 10.1039/C6RA03210A. ##
[25]. Ma, X., Li, Y., Chi, C., Zhang, W., Shi, J., & Duan, L. (2017). CO2 capture performance of mesoporous synthetic sorbent fabricated using carbide slag under realistic calcium looping conditions, Energy and Fuels, 31: 7299–7308, doi.org/10.1021/acs.energyfuels.7b00676. ##
[26]. Sun, Z., Xu, C., Chen, S., & Xiang, W. (2016). Xiang, improvements of CaO-based sorbents for Cyclic CO2 capture using a wet mixing process, Chemical Engineering Journal, 286: 320–328, doi.org/10.1016/j.cej.2015.10.051. ##
[27]. mani, M., Tahmasebpoor, M., Sánchez-Jiménez, P. E., Valverde, J. M., & Moreno, V. (2022). Moreno, Improvement in cyclic CO2 capture performance and fluidization behavior of eggshell-derived CaCO3 particles modified with acetic acid used in calcium looping process, CO2 Utilization 65: 102207, doi.org/10.1016/j.jcou.2022.102207. ##
[28]. Jiménez, P. E. S., Perejón, A., Guerrero, M. B., Valverde, J. M., Ortiz, C., & Maqueda, L. A. P. (2019). Maqueda, high-performance and low-cost macroporous calcium oxide-based materials for thermochemical energy storage in concentrated solar power plants, Applied Energy, 235: 543-552, doi.org/10.1016/j.apenergy.2018.10.131. ##
[29]. J. A. Dean, Lange›s Handbook of Chemistry, 1st edition, New York, McGraw-Hill, 1987, 1-1291, ISBN 0-07-016384-7.
[30]. Busca, G., & Resini, C. (2006). Vibrational spectroscopy for the analyses of geological and inorganic materials, Encyclopedia of Analytical Chemistry, 10954–11008, doi.org/10.1002/9780470027318.a5612m. ##
[31]. Carvalho, J., Araújo, J., & Castro, F. (2011). Alternative low-cost adsorbent for water and wastewater decontamination derived from eggshell waste: an overview, Waste Biomass Valor 2: 157–167. ##
[32]. Nobre, L. C., Santos, S., Palavra, A. M., Calvete, M. J., de Castro, C. A. N., Nobre, B. P. (2020). Nobre, Supercritical Antisolvent Precipitation of Calcium Acetate Fromeggshells, Supercritical Fluids, 163: 104862, doi.org/10.1016/j.supflu.2020.104862. ##
[33]. Aracri, E., Blanco, C. D., & Tzanov, T. (2014). An enzymatic approach to develop a lignin-based adhesive for wool floor coverings, Electronic Supplementary Material (ESI) for Green Chemistry 16: 2597-2603. ##
[34]. Electronic Supplementary Material (ESI) for RSC Advances 2016. ##
[35]. Musumeci, A. W., Frost, R. L., & Waclawik, E. R. (2007). A spectroscopic study of the mineral paceite (calcium acetate), Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 67(3-4): 649-661, doi.org/10.1016/j.saa.2006.07.045. ##
[36]. Silaban, A., Narcida, M., & Harrison, D. P. (1992). Calcium acetate as a sorbent precursor for the removal of carbon dioxide from gas streams at high temperature, Resources, Conservation and Recycling 1: 139-153, doi.org/10.1016/0921-3449(92)90012-Q. ##
[37]. Sattari, F., Tahmasebpoor, M., Valverde, J. M., Ortiz, C., & Mohammadpourfard, M. (2021). Modelling of a fluidized bed carbonator reactor for post-combustion CO2 capture considering bed hydrodynamics and sorbentcharacteristics, Chemical Engineering Journal 406: 126762, doi.org/10.1016/j.cej.2020.126762. ##
[38]. Imani, M., Tahmasebpoor, M., Sánchez-Jiménez, P. E., Valverde, J. M., Moreno, V. (2022). Fluidization of nanoparticles: the effect of surface characteristics, The 14th International Conference On Fluidization From fundamentals To Products, doi.org/10.1016/j.cej.2020.126762. ##
[39]. Coppola, A., Salatino, P., Montagnaro, F. (2013). Fluidized bed calcium looping cycles for CO2 capture under oxy-firing calcination conditions: Part 2. Assessment of dolomite vs. limestone, Chemical Engineering Journal 231: 544-549, doi.org/10.1016/j.cej.2013.07.112. ##