کاربرد مدل‌های زمین آماری و فرکتالی سرعت-حجم به‌منظور تعیین سرعت‌های لایه‌ای و فشارهای سازندی در یکی از میادین جنوب غرب ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی نفت و معدن، دانشگاه آزاد اسلامی، واحد تهران جنوب، تهران، ایران

2 گروه پژوهش ژئوفیزیک، پژوهشکده علوم زمین، پژوهشگاه صنعت نفت، تهران، ایران

3 گروه مهندسی نفت، مواد و معدن، دانشگاه آزاد اسلامی، واحد تهران مرکز، تهران، ایران

چکیده

در روش‌های لرزه‌ای، تخمین فشارهای سازندی با تبدیل سرعت لرزه‌ای به فشار منفذی و همسان‌سازی آن با نگار سرعت و کالیبراسیون نتایج با فشار مؤثر حاصل از آزمایش چاه به‌دست می‌آید. این مطالعه در زمینه مطالعات سرعت در یکی از میادین دشت آبادان واقع در جنوب غربی ایران است که سازندهای هدف عموماً کربناته بوده و به‌جز سازند کژدمی فاقد میان لایه‌های شیل هستند. این مقاله براساس داده‌های 23 حلقه چاه و تعبیر و تفسیر داده‌های لرزه‌ای صورت پذیرفته و مدل‌های سرعت فشاری و برشی از مدل‌های زمین آماری ترکیبی، تعیین شده و با مدل‌های فرکتالی ناشی از روش مقدار-حجم به‌خصوص مدل سرعت-حجم مورد مقایسه قرار گرفته‌اند. براساس داده‌های VSP، حداکثر سرعت لایه‌ای در محدوده m/s 2900–2760 در سمت شمال شرق مربوط به سازند گوتنیا است. جهت مطالعات فشار شکست سازند نیز مدل‌سازی مکعب سرعت برشی با استفاده از مغزه‌های چاه اکتشافی و نگار سرعت برشی انجام شده که مکعب نهایی با ضریب همبستگی 95/0 برای داده‌های نگار سرعت برشی حاصل از داده‌های تخلخل، لیتولوژی و داده‌های اصلی سرعت برشی DSI تعیین شد. مقادیر نهایی مقاومت صوتی وارون‌سازی شده در اعماق بیشتر میدان اکثراً در محدوده (m/s)*(g/cm3) 15-8 هزار است که در محدوده سازند‌های آهکی می‌تواند قرار گیرد. براساس محاسبه ماتریس لوگرشیو حاصل از مدل فرکتالی مقدار-حجم، بیشترین میزان تطبیق نهایی در بازه‌های سنگ‌آهک غالب به‌میزان 74/0 محاسبه شده است. این نشان از تطابق بالای مدل مکعب سرعت فشاری با استفاده از ترکیب شبیه‌سازی گوسی متوالی توأم با کوکریجینگ و مقاومت صوتی حاصل از وارون‌سازی و نیز مدل‌سازی فرکتالی سرعت-حجم است. همچنین براساس واریوگرام‌های مدل نهایی مکعب سرعت فشاری، میزان سقف واریوگرام و ناهمسان‌گردی در جهت عمودی به‌ترتیب 34/0 و m 96 و در جهت‌های افقی اصلی و فرعی به‌ترتیب 96/0 و m 11850 است.

کلیدواژه‌ها


عنوان مقاله [English]

Application of Geostatistical and Velocity-Volume Fractal Models to Determine Interval Velocity and Formation Pressures in an Oilfield of SW Iran

نویسندگان [English]

  • Pooria Kianoush 1
  • Peyman Afzal 1
  • Ghodratollah Mohammadi 1
  • Nasser Keshavarz Faraj Khah 2
  • Seyed Aliakbar Hosseini 3
1 Department of Petroleum and Mining Engineering, South Tehran Branch, Islamic Azad University, Iran
2 Geophysics Group, Geoscience Faculty, Research Institute of Petroleum Industry (RIPI), Tehran, Tehran, Iran
3 Department of Petroleum, Materials and Mining Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
چکیده [English]

In seismic methods, the estimation of formation pressures is acquired by transforming the seismic velocity to the pore pressure and contrasting it with the velocity log and effective pressure obtained during the well-test program. This study is regarding the velocity studies in one of the oilfields in SW Iran, which is generally carbonated. Except for the Kazhdumi Formation, they do not have shale interbeds. This study is based on information from 23 wells and seismic interpretation. Compressional (Vp) and shear velocity (Vs) models are determined from combined geostatistical models and compared with the value-volume fractal method, especially the velocity-volume model. Based on vertical Seismic Profiling (VSP) data, the maximum Interval velocity is 2760-2900 m/s in the northeast of the field related to the Gotnia Formation. In order to determine the formation fracture pressure, the shear velocity cube is modeled using exploratory well-cores and dipole sonic imager (DSI) shear velocity logs. The final cube with a coefficient of 0.95 has been determined for the shear velocity data obtained from the porosity, lithology, and primary DSI shear velocity data. The final amounts of inverted acoustic impedance (AI) in the deeper formation of the field are mainly in the range of 8000-15000 [(m/s)*(gr/cm3)], which it could be referred to as calcareous formations. Based on the calculation of the logratio matrix obtained from the Velocity-Volume (Vp-V) fractal model, the maximum overall accuracy (OA) in the dominant limestone intervals is 0.74. It indicates a high correlation of the compressional velocity cube model obtained from a combination of sequential Gaussian simulation (SGS) and co-kriging models with acoustic impedance inversion (AI). In the final Vp cube’s vertical Variogram, the sill is 0.34, and in major and minor is 0.96. Anisotropy range for vertical variogram range is 96 meters and for major and minor directions is 11850 meters.

کلیدواژه‌ها [English]

  • Seismic Velocity Modeling
  • Compressional Velocity Cube
  • Acoustic Impedance Inversion
  • Formation Pressure
  • Velocity-Volume Fractal Model
[1]. مداحی ا، قاضی نژاد س، اسماعیل پور س، حیدری م (1393) امکان‌سنجی بهره‌برداری از مطالعات لرزه‌نگاری چهار بعدی مخزن سروک در میدان آزادگان، مجله پژوهش نفت، 78: 126-117. ##
[2]. آدیم ع، ریاحی م ع، باقری م (1397) تخمین فشار منفذی به روش‌های ایتون و باورز با استفاده از داده‌های لرزه‌نگاری و چاه‌پیمایی، نشریه پژوهش‌های ژئوفیزیک کاربردی، 4، 2: 275-267، jrag.2018.6360.1167 /10.22044 :doi.. ##
[3]. Maurya S P, Singh N P, Singh K H (2020) Post-stack seismic inversion, In: Seismic Inversion Methods: A Practical Approach, Springer Geophysics, Chapter 3, 39-70, ISBN: 978-3-030-45662-7. ##
[4]. Shahbazi A, Soleimani Monfared M, Thiruchelvam V, Ka Fei T, Babasafari A A (2020) Integration of knowledge-based seismic inversion and sedimentological investigations for heterogeneous reservoir. Journal of Asian Earth Sciences, 202, 104541, doi.org/10.1016/j.jseaes.2020.104541. ##
[5]. پور صیامی ح (1392) مدل‌سازی فشار منفذی مخزن هیدروکربونی در جنوب غرب ایران با استفاده از داده‌های چاه پیمایی، مجله پژوهش نفت، 23 ،74 : 86-72، pr.2013.293ا doi:10.22078. . ##
[6]. Haque A E, Qadri S T, Bhuiyan M A H, Navid M, Nabawy B S, Hakimi M H, Abd-El-Aal A K (2022) Integrated wireline log and seismic attribute analysis for the reservoir evaluation: A case study of the Mount Messenger Formation in Kaimiro Field, Taranaki Basin, New Zealand. Journal of Natural Gas Science and Engineering, 99, 104452, doi.org/10.1016/j.jngse.2022.104452. ## 
[7]. Radwan A A, Nabawy B S, Abdelmaksoud A, Lashin A (2021) Integrated sedimentological and petrophysical characterization for clastic reservoirs: A case study from New Zealand, Journal of Natural Gas Science and Engineering, 88, 103797, doi.org/10.1016/j.jngse.2021.103797. ## 
[8]. عاقبتی ر (1387) معرفی یک میدان: طرح توسعه میدان آزادگان، ماهنامه علمی- ترویجی اکتشاف و تولید، 51، 8-6. ##
[9]. Jindal N, Kumar Biswal A, Hemant Singh K (2016) Time-depth modeling in high pore-pressure environment, offshore East Coast of India, AAPG 2016 Annual Convention and Exhibition, Calgary, Alberta, Canada, June 19-22. ##
[10]. Haris A, Sitorus R J, Riyanto A (2017) Pore pressure prediction using probabilistic neural network: case study of South Sumatra Basin, Southeast Asian Conference on Geophysics, IOP Conf. Series: Earth and Environmental Science1 26324 (526071879)0 012021. ##
[11]. Bahmaei Z, Hosseini E (2020) Pore pressure prediction using seismic velocity modeling: case study, Sefid-Zakhor gas field in Southern Iran. Journal of Petroleum Exploration and Production Technology, 10: 1051–1062. ##
[12]. امیرزاده م، کمالی م ر، نبی بیدهندی م (1392) بررسی خصوصیات مخزنی با انجام برگردان داده‌های لرزه‌ای و تلفیق نشان‌گرهای لرزه‌ای در سازند سروک در یکی از میادین نفتی جنوب غرب ایران، مجله پژوهش نفت، 23، 75: 29-20. ##
[13]. امیری بختیار م ص، زرگر ق، ریاحی م ع، انصاری ح ر (1396) وارون‌سازی لرزه‌ای زمین آماری به‌روش شبیه‌سازی طیفی در یکی از میادین نفتی جنوب غربی ایران، سومین سمینار ژئوفیزیک اکتشافی نفت، مدیریت اکتشاف شرکت ملی نفت ایران، 74-70. ##
[14]. Abdolahi A, Chehrazi A, Kadkhodaie A, Babasafari A B (2022) Seismic inversion as a reliable technique to anticipating of porosity and facies delineation, a case study on Asmari Formation in Hendijan field, southwest part of Iran, Journal of Petroleum Exploration and Production Technology. ##
[15]. Rointan A, Soleimani Monfared M, Aghajani H (2021) Improvement of seismic velocity model by selective removal of irrelevant velocity variations, Acta Geodaetica et Geophysica, 56: 145–176, doi.org/10.1190/geo2017-0248.1. ##
[16]. Castagna J P, Batzle M L, Eastwood R L (1985) Relationships between compressional-wave and shear-wave velocities in clastic silicate rocks, GEOPHYSICS, 50, 4: 571-581, doi.org/10.1190/1.1441933. ##
[17]. Castagna J P, Batzle M L, Kan (1993) Rock Physics:The link between rock properties and AVO response,
In: Offset-dependet reflectivity - Theory and practice of AVO analysis, Investigations in Geophysics, 8, 135-171. ##
[18]. فتاحی ه، عسکری م، مجدی فر س (1395) تخمین سرعت موج برشی در یکی از مخازن هیدروکربوری جنوب غربی ایران با استفاده ازچاه نمودارهای مختلف و یک روش جدید ترکیبی هوشمند مجله زمین‌شناسی کاربردی پیشرفته زمستان 95 ، 22: 35-43، AAG.2016.12705/ا 10.22055. ##
[19]. Bowers G (1995) Pore pressure estimation from velocity data: accounting for overpressure mechanisms besides undercompaction, SPE Drilling and Completion, 10, 2: 89-95, doi.org/10.2118/27488-PA. ##
[20]. Bowers G L (2002) Detecting high overpressure, The Leading Edge, 21, 2: 113-224, doi.org/10.1190/1.1452608. ##
[21]. Badri MA, Sayers CM, Awad R, Graziano A (2000) A feasibility study for pore-pressure prediction using seismic velocities in the offshore Nile Delta, Egypt, The Leading Edge October 2000, Schlumberger Oilfield Services, Cairo, Egypt, 1103-1108. ## [22]. Lantuejoul C h (2002) Geostatistical simulation models and algorithms, 1st edition, Springer-VerlagBerlin Heidelberg GmbH, 1-173. ##
[23]. Kelkar M, Perez G (2002) Applied geostatistics for reservoir characterization, 1st edition, Society of Petroleum Engineers, Richardson, Texas, 30-50. ##
[24]. Bohling G (2007) Introduction to geostatics, hydro-geophysics: theory, methods, and modeling, 1st edition, Boise State University, Boise, Idaho, 259-269. ##
[25]. Armstrong M, Galli A, Beucher H, LeLoc’h G, Renard D, Eschard R, Doligez B, Geffroy F (2011) Pluri-gaussian simulations in geosciences, 1st edition, Springer-Verlag Berlin Heidelberg GmbH, 1-173. ##
[26]. Karami O, Fallah A, Shataei S, Latifi H (2018) Assessment of geostatistical and interpolation methods for mapping forest dieback intensity in Zagros forests. Caspian Journal of Environmental Sciences, 16, 1: 73-86. ##
[27]. Mandelbrot B B (1985) Self-affine fractals and fractal dimension, Physica Scripta, 32, 4: 257, doi:10.1088/0031-8949/32/4/001. ##
[28]. Hassanpour S, Afzal P (2013) Application of concentration–number (C–N) multifractal modeling for geochemical anomaly separation in Haftcheshmeh porphyry system, NW Iran, Arabian Journal of Geosciences, 6: 957–970. ##
[29]. Afzal P, Fadakar Alghalandis, Y, Khakzad A, Moarefvand P, Rashidnejad Omran N (2011) Delineation of mineralization zones in porphyry Cu deposits by fractal concentration–volume modeling, Journal of Geochemical Exploration 108, 220–232, doi.org/10.1016/j.gexplo.2011.03.005. ##
[30]. Daneshvar Saein L, Rasa I, Rashidnejad Omran N, Moarefvand P, Afzal P (2012) Application of concentration-volume fractal method in induced polarization and resistivity data interpretation for Cu-Mo porphyry deposits exploration, case study: Nowchun Cu-Mo deposit, SE Iran, Nonliner Processes in Geophysics 19: 431–438, doi.org/10.5194/npg-19-431-2012. ##
[31]. Yasrebi A B, Hezarkhani A, Afzal P (2017) Application of Present Value-Volume (PV-V) and NPV-Cumulative Total Ore (NPV-CTO) fractal modelling for mining strategy selection, Resources Policy, 53, 384-393, doi.org/10.1016/j.resourpol.2017.07.011. ##
[32]. Mahdizadeh M, Afzal P, Eftekhari M, Ahangari K (2022) Geomechanical zonation using multivariate fractal modeling in Chadormalu iron mine, Central Iran, Bulletin of Engineering Geology and the Environment, 81, 1: 1-11. ##
[33]. Paravarzar, S., Maarefvand, P., Maghsoudi, A. Afzal, P. (2014). Correlation between geological units and mineralized zones using fractal modeling in Zarshuran gold deposit (NW Iran), Arabian Journal of Geosciences, 8: 3845–3854. ##
[34]. Pourgholam M M, Afzal P, Adib A, Rahbar K, Gholinejad M (2022) Delineation of Iron alteration zonesusing spectrum-area fractal model and TOPSIS decision-making method in tarom metallogenic zone, NW Iran, Journal of Mining and Environment (JME) 13, 2: 503-525. ##
[35]. Kianoush, P, Mohammadi G, Hosseini SA, Keshavazr Faraj Khah N, Afzal P (2022) Compressional and shear interval velocity modeling to determine formation pressures in an oilfield of SW Iran, Journal of Mining and Environment (JME), 13, 3: 851-873. ##
[36]. Farhadi S, Afzal P, Boveiri Konari M, Daneshvar Saein L, Sadeghi B (2022) Combination of machine learning algorithms with concentration-area fractal method for soil geochemical anomaly detection in sediment-hosted Irankuh Pb-Zn deposit, Central Iran, Minerals 12, 6: 689. ##
[37]. Soltani F, Afzal P, Asghari O (2014) Delineation of alteration zones based on Sequential Gaussian Simulation and concentration–volume fractal modeling in the hypogene zone of Sungun copper deposit, NW Iran, Journal of Geochemical Exploration, 140: 64–76, doi.org/10.1016/j.gexplo.2014.02.007. ##
[38]. Carranza E J M (2011) Analysis and mapping of geochemical anomalies using logratio-transformed stream sediment data with censored values. J Geochem Explor 110, 2:167–185, doi.org/10.1016/j.gexplo.2011.05.007. ##
[39]. Morgan P (1999) Azadegan Field Geophysical Interpretation Part 1, ConocoPhillips UK LTD, August 1999, Technical Report. ##
[40]. Mohammadi M, Farhani M (2011) Evaluation report of the Jurassic horizon of the well Azadegan-10, National Iranian Oil Company, Exploration Directorate, General Directorate of Petroleum Engineering, 71. ##
[41]. Du Y, Chen J, Cui Y, Xin J, Wang J, Zhen Li Y, Fu X (2016) Genetic mechanism and development of the unsteady Sarvak play of the Azadegan oil field, southwest of Iran. Petroleum Science, 13: 34–51. ##
[42]. Hendi S S (2002) Estimation of shear wave velocity from petrophysical logs and correlation with lab measurments in the Azadegan wells No (1 to 4), NIOC-RIPI, Geophysics Research Department, 4: 18-31. ##
[43]. Kianoush P, Mohammadi G, Hosseini S A, Keshavarz Faraj Khah N, Afzal P (2022) Application of pressure-volume (P-V) fractal models in modeling formation pressure and drilling fluid determination in an oilfield of SW Iran, Journal of Petroleum Science and Technology (JPST), 12, 1: 2-20, doi.org/10.22078/jpst.2022.4845.1809. ##
[44]. Kianoush P, Mohammadi G, Hosseini S A, Keshavarz Faraj Khah N, Afzal P (2023) Inversion of seismic data to modeling the Interval Velocity in an Oilfield of SW Iran. Results in Geophysical Sciences, 13, 100051, doi.org/10.1016/j.ringps.2023.100051. ##
[45]. Kianoush P, Mohammadi G, Hosseini S A, Keshavarz Faraj Khah N, Afzal P (2023) Determining the drilling mud window by integration of geostatistics, intelligent, and conditional programming models in an oilfield of SW Iran, Journal of Petroleum Exploration and Production Technology, 13: 5. ##
[46]. Kianoush P, Mohammadi G, Hosseini S A, Keshavarz Faraj Khah N, Afzal P (2023) ANN-based estimation of pore pressure of hydrocarbon reservoirs—a case study, Arabian Journal of Geosciences, 16: 302. ##
[47]. Talebi F, HajiZadeh F (2022) The effect of porosity on the seismic waves velocities and elastic coefficients in a South-Western Iran›s oil field. Journal of Petroleum Science and Technology (JPST), 12, 2: 34-41, doi: 10.22078/JPST.2023.1287. ##
[48]. Shakiba S, Doulati ardejani F (2023) Introducing a MATLAB Code as a Statistical Approach for Fracture Networks Modeling. Journal of Petroleum Science and Technology (JPST), Available Online from 14 February 2023, 10.22078/JPST.2023.4935.1838. ##
[49]. Golmohamadi E, Moradzade A, Abdollahipour A, Mohebian R, Bahramali Asadi Kelishami S (2022) Identification of Fractures in Kangan and Dalan Formations Using the Integration of FMI Log and Seismic Attributes. Journal of Petroleum Research, 32, 126: 57-71, doi: 10.22078/pr.2022.4806.3154. ##
[50]. Adabnezhad, P, Kadkhodaie A, Norouzi G, Rostami A (2018) Three-Dimensional Modeling of Geo mechanical Units Using Seismic Data in One of the Southern Iran Gas Fields. Journal of Petroleum Research, 28, 1: 85-96, doi: 10.22078/pr.2017.2364.2095. ##