تحلیل تکتونیکی یکی از میادین نفتی جنوب‌غرب ایران، با استفاده از نمودار تصویری FMI

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم‌ زمین، دانشکده علوم طبیعی، دانشگاه تبریز، ایران

2 گروه علوم‌زمین، دانشکده علوم طبیعی، دانشگاه تبریز، ایران

چکیده

بیش‌تر ذخایر هیدروکربنی دنیا در مخازن شکافدار طبیعی ذخیره می‏شوند و چنین سیستم‌هایی می‌توانند تاثیر قابل ‌توجهی بر عملکرد مخزن داشته باشند. بنابراین مطالعات ژئومکانیکی، درک و بررسی الگوهای شکستگی‏ها به منظور بهینه‌سازی تولید هیدروکربن اهمیت بالایی برای زمین‌شناسان و مهندسین نفت دارد. مطالعات ژئومکانیکی به طور معمول شامل اندازه و جهت‌گیری سه محور اصلی تنش شامل تنش عمودیSv ، تنش افقی بیشینه (SHmax) و کمینه (Shmin) است. مطالعات مربوط به چاه‌نگاری و مسائل ژئومکانیکی، از اهداف روش‌های تصویربرداری الکتریکی دیواره چاه هستند. دستگاه‌های الکتریکی، صوتی یا تصویری که تصاویر با وضوح بالا را ثبت می‏کنند، درون چاه رانده شده و اطلاعات مهمی در مورد مرزهای لایه‏بندی‏، عناصر ساختاری مانند گسل‌ها، چین‌ها، ناپیوستگی‌ها، شکستگی‏ها و حتی تخلخل‌های ثانویه را فراهم می‏کنند. بر این اساس در این مطالعه در یکی از میادین نفتی جنوب‌غرب ایران با استفاده از تصاویر ریزمقاومت سازندی (FMI) در مورد شکستگی‏های طبیعی و القایی مرتبط با چین‌خوردگی و گسلش منطقه‌ای، نوع شکستگی، جهت‌گیری، تراکم، بازشدگی، مقدار شیب و روابط آنها با زمین ساخت منطقه مورد بررسی قرار گرفته است. با وجود پیچیدگی‌های زمین‌شناسی میدان مورد مطالعه، جهت‌گیری‌ شکستگی‏های زیرسطحی رابطه روشنی را با محور چین‌خوردگی محلی نشان داده و در برخی موارد به نظر می‌رسد که بیشتر به جهت تنش حداکثر افقی در محل کنونی یا گسلش امتداد لغز محلی نیز مرتبط باشند. جهت تنش بیشینه و کمینه افقی بر اساس تحلیلهای انجام گرفته در دو چاه به ترتیب N30E - N60W و N50E- N40W به‌دست آمدند. براساس شکستگیهای باز مشاهده شده در چاهها، سه مرحله شکست پیشنهاد شده‌ است: شکستگی پیش از چین‌خوردگی، شکستگی هم‌زمان با چین‌خوردگی (چین‌خوردگی اولیه) و شکستگی پس از چین‌خوردگی.

کلیدواژه‌ها


عنوان مقاله [English]

Tectonic Analysis one of the South Western Oil fields in Iran, Using FMI Image Log

نویسندگان [English]

  • Looghman Sadeghi 1
  • Mohammad Hassanpour Sedghi 2
  • Ali Kadkhodaie 2
1 Department of Earth Sciences, Faculty of Natural Sciences, University of Tabriz, Iran
2 Department of Earth Sciences, Faculty of Natural Sciences, University of Tabriz, Iran
چکیده [English]

Most hydrocarbon reserves are stored in natural fractured reservoirs and such systems can affect significantly on the reservoir performance. Therefore, geomechanical studies, understanding and investigating fracture patterns to optimize hydrocarbon production are of great importance for the geologists and oil engineers. Geomechanical studies generally include size and orientation of the three main axes of stress, including vertical stress (Sv), maximum horizontal stress (SHmax) and minimum horizontal stress (Shmin). Studies related to well logging and geomechanical issues are the main objectives of electrical imaging techniques of the well wall.
Electrical, sonic or image log, which record high-quality images are pushed in to the well and provide important information regarding boundaries of bedding, structural elements such as faults, folds, discontinuities, fractures and even secondary porosities. Accordingly, in this study, in one of the west south oil fields of Iran using Fullbore Formation Micro Imager (FMI) regarding natural and induced fractures related to regional folding and faulting, some characteristics of the fracture patterns have been studied. These characteristics include the type of fracture, orientation, density, openness, amount of sleep and their relationship with regional construction of the ground. Despite the geological complexities of understudied field, orientations of sub surface fractures indicated clear relationship with the local folding axis and in some cases, it seems that it relates more the orientation of the maximum horizontal stress to the present location of the local strike slip fault too. Orientation of the maximum and minimum horizontal stress obtained N30E- N60W and N50E- N40W respectively based on two wells data analysis. According to the open fractures observed in the wells, three stages of fracture are proposed: pre-folding, early-folding and post-folding fractures.

کلیدواژه‌ها [English]

  • Fractures
  • Stress
  • FMI
  • Sarvak
  • Tectonics
[1]. Zoback M.D., 2007. Reservoir Geomechanics, Cambridge University Press, Cambridge, New York. ##
[2]. Fellgett, M. W., Kingdon, A., Williams, J. D. O., and Gent, C. M. A. (2018). Stress magnitudes across UK regions: new analysis and legacy data across potentially prospective unconventional resource areas. Mar. Pet. Geol. 97, 24–31. ##
[3]. Nelson EJ, Meyer JJ, Hillis RR, Mildren SD (2005) Transverse drilling-induced tensile fractures in the West Tuna area, Gippsland Basin, Australia: implications for the in-situ stress regime, International Journal of Rock Mechanics and Mining Sciences, 42: 361–371. ##
[4]. Rider M H (2002) The geological interpretation of well logs, Second Edition, Rider-French Consulting Ltd. ##
[5]. خوشبخت ف، معماریان ح، محمدنیا م (1388) مقایسه شکستگی‌ها در یک موقعیت ساختاری یکسان در یک میدان نفتی، با استفاده از لاگ تصویری. فصل‌نامه علمی-پژوهشی علوم‌زمین، 19، 73: 65-70. ##
[6]. Tingay M, Reinecker J, Müller B (2008) Borehole breakout an drilling induced fracture analysis from image logs, World Stress Map Project, Guidelines, Image Logs, World Stress Map Project, 1: 8. ##
[7]. Assous S, Elkigton P, Clark S (2014) Automated detection of planar geological features in borehole images, Geophysics, 79, 1: 11–19, doi.org/10.1190/geo2013-0189.1. ##
[8]. Al-Rubaie A, Ben Mahmud H (2020) A numerical investigation on the performance of hydraulic fracturing in naturally fractured gas reservoirs based on stimulated rock volume, Journal of Petroleum Exploration and Production. ##
[9]. Allen M B, Armstrong H A (2008) Arabia–Eurasia collision and the forcing of mid-Cenozoic global cooling, Palaeogeogr. Palaeoclim, Palaeoecol, 265, 1–2: 52– 58, doi.org/10.1016/j.palaeo.2008.04.021. ##
[10]. Nelson R A (2001) Geologic analysis of naturally fractured reservoirs, Gulf Professional Publishing, United Kingdom, 332.
[11]. Talbot C J, Alavi M (1996) The past of a future syntaxis across the Zagros, Geological Society, London, Special Publications,100: 89-109, doi.org/10.1144/GSL.SP.1996.100.01.08. ##
[12]. Berberian M (1995) Master blind thrust faults hidden under the Zagros folds: active basement tectonics and surface morphotectonics, Tectonophysics, Tectonophysics, 241, 3-4: 193-224, doi.org/10.1016/0040-1951(94)00185-C. ##
[13]. Macleod J H (1972) Geological Map of Mehran, Scale 1:100,000. NIOC New York. ##
[14]. Gassemi M, Asadollah S (2015) Active surface cracking in Aghajari Formation of the Azar oil field, Zagros, western Iran, Marine and Petroleum Geology, 68: 498-508, doi.org/10.1016/j.marpetgeo.2015.09.011. ##
[15]. Geolog Tutorial of GEOLOG Software, the USA. ##
[16]. Bellahsen N, Fiore P, Pollard D D (2006) The role of fractures in the structural interpretation of Sheep Mountain Anticline, Wyoming, Journal of Structural Geology, 28, 5: 850-867, doi.org/10.1016/j.jsg.2006.01.013. ##
[17]. Ameen M S, Buhidma I M, Rahim Z (2010) The function of fractures and in-situ stresses in the Khuff reservoir performance, onshore fields, Saudi Arabia, AAPG Bull, 94, 27: 60. ##
[18]. Price N (1966) Fault and joint development in brittle and semi-brittle rock, Pergamon Press, Oxford, 176. ##
[19]. Price N, Cosgrove J (1990) Analysis of Geological Structures, Cambridge University Press, Cambridge, 502. ##
[20]. Falcon N L (1969) Problems of the relationship between surface structure and deep displacements illustrated by the Zagros range, In: P. KENT, G. Satterthwaite and A. SPENCER (Eds.), Time and Place Orogeny, Geological Society of London, 3: 9-22, doi.org/10.1144/GSL.SP.1969.003.01.0. ##
[21]. Stocklin J (1974) Possible ancient continental margins in Iran, In: C. BURK and C. DRAKE (Eds.), Geology of Continental Margins, Springer-Verlag, New York, 873-877. ##
[22]. Haynes S J, McQuillan H (1974) Evolution of the Zagros suture zone, southern Iran, Geological Society of America Bulletin, 85, 5: 739-744, doi.org/10.1130/0016-7606(1974)85<739:EOTZSZ>2.0.CO;2. ##
[23]. Stoneley R (1981) The geology of the Kuh-e Dalneshin area of southern Iran, and its bearing on the evolution of southern Tethys, Journal of the Geological Society London, 138, 5: 509-526. ##
[24]. Alavi M (1994)Tectonicsof the Zagros orogenic belt of Iran: new data and interpretations, Tectonophysics, 229, 3-4: 211-238, doi.org/10.1016/0040-1951(94)90030-2. ##
[25]. Stoecklin J (1968) Structural history and tectonics of Iran: a review, AAPG bulletin, 52, 7: 1229-1258, doi.org/10.1306/5D25C4A5-16C1-11D7-8645000102C1865D. ##
[26]. باسره م، فرضی‌پور ع، صفایی ه، خانه‌زر ر (1391) تأثیر وضعیت پی‌سنگ بر ساختارهای سطحی مجاور گسل بالارود در کمربند چین‌خورده رانده زاگرس براساس مدل‌سازی تجربی تکتونیکی، سی و یکمین گردهمایی علوم‌زمین، 9. ##
[27].شوراب, یوسفی موسوی (2018) تحلیل توسعه شکستگی‌ها وابسته به چین خوردگی و تعیین جهت تنش‌های برجا در سازند سروک در یکی از میادین نفتی غرب. زمین ساخت، 2، 6: 55-68.‎ ##
[28]. Colman- Sad S P (1978) Fold development in Zagros simply fold belt, Southwest Iran, The American Association of petroleum Geologists Bulletin, 62, 6: 984-1003, doi.org/10.1306/C1EA4F81-16C9-11D7-8645000102C1865D. ##
[29]. Hessami K, Koyi H A, Talbot C J (2001b) The significance of strike slip faulting in the basement of the Zagros fold - thrust belt, Joumal of Petroleum Geology, 24, 1: 5-28. ##
[30]. Casini G, Gillespie P A, Verges J, Romaire I, Fernandez N, Casciello E, Saura E, Mehl C, Homke S, Embry J C, Aghajari L, Hunt D W (2011) Sub-seismic fractures in foreland fold and thrust belts: insight from the Lurestan Province, Zagros Mountains, Iran, Petroleum GeoscienceSearch Dropdown Menu, 17, 263e282, doi.org/10.1144/1354-079310-043. ##
[31]. Tavani S, Storti F, Soleimany B, Fallah M, Munoz J P, Gambini R (2011) Geometry, kinematics and fracture pattern of the Bangestan anticline, Zagros, SW Iran, Geological Magazine, 148, 5-6: 964-979. ##
[32]. Fard I A, Braathen A, Mokhtari M, Alavi S A (2006) Interaction of the Zagros fold thrust belt and the arabian-type, deep-seated folds in the Abadan Plain and the Dezful Embayment, SW Iran, Petroleum Geoscience, doi.org/10.1144/1354-079305-706. ##