[1]. Li K, Wang H, Wei Y, Yan D (2011) Transformation of methane into synthesis gas using the redox property of Ce–Fe mixed oxides: effect of calcination temperature, International Journal of Hydrogen Energy, 36, 5: 3471-3482, doi.org/10.1016/j.ijhydene.2010.12.038. ##
[2]. Estifaee P, Haghighi M, Babaluo A A, Rahemi N, Jafari M F (2014) The beneficial use of non-thermal plasma in synthesis of Ni/Al2O3–MgO nanocatalyst used in hydrogen production from reforming of CH4/CO2 greenhouse gases, Journal of Power Sources, 257: 364-373, doi.org/10.1016/j.jpowsour.2014.01.128. ##
[3]. Ma J, Sun N, Zhang X, Zhao N, Xiao F, Wei W, Sun Y (2009) A short review of catalysis for CO2 conversion, Catalysis Today, 148, 3-4: 221-231, doi.org/10.1016/j.cattod.2009.08.015. ##
[4]. Rostrup-Nielsen J R (2000) New aspects of syngas production and use, Catalysis Today, 63, 2-4: 159-164, doi.org/10.1016/S0920-5861(00)00455-7. ##
[5]. York A P, Xiao T, Green M L (2003) Brief overview of the partial oxidation of methane to synthesis gas, Topics in Catalysis, 22: 345-358. ##
[6]. Patel S, Kundu S, Halder P, Marzbali M H, Chiang K, Surapaneni A, Shah K (2020) Production of hydrogen by catalytic methane decomposition using biochar and activated char produced from biosolids pyrolysis, International Journal of Hydrogen Energy, 45, 55: 29978-29992, doi.org/10.1016/j.ijhydene.2020.08.036. ##
[7]. Hou Z, Chen P, Fang H, Zheng X, Yashima T (2006) Production of synthesis gas via methane reforming with CO2 on noble metals and small amount of noble-(Rh-) promoted Ni catalysts, International Journal of Hydrogen Energy, 31, 5: 555-561, doi.org/10.1016/j.ijhydene.2005.06.010. ##
[8]. Zhang L, Zhang Q, Liu Y, Zhang Y (2016) Dry reforming of methane over Ni/MgO-Al2O3 catalysts prepared by two-step hydrothermal method, Applied Surface Science, 389: 25-33, doi.org/10.1016/j.apsusc.2016.07.063. ##
[9]. Pechimuthu N A, Pant K K, Dhingra S C (2007) Deactivation studies over Ni− K/CeO2− Al2O3 catalyst for dry reforming of methane, Industrial and Engineering Chemistry Research, 46, 6: 1731-1736, doi.org/10.1021/ie061389n. ##
[10]. Bychkov V Y, Tyulenin Y P, Firsova A A, Shafranovsky E A, Gorenberg A Y, Korchak V N (2013) Carbonization of nickel catalysts and its effect on methane dry reforming, Applied Catalysis A: General, 453: 71-79. ##
[11]. Rahemi N, Haghighi M, Akbar Babaluo A, Fallah Jafari M, Khorram S (2013) Conversion of CH4/CO2 to syngas over Ni-Co/Al2O3-ZrO2 nanocatalyst synthesized via plasma assisted co-impregnation method: Surface properties and catalytic performance, Journal of Applied Physics, 114, 9: 094301, doi.org/10.1063/1.4816462. ##
[12]. Rahmani F, Haghighi M, Vafaeian Y, Estifaee P (2014) Hydrogen production via CO2 reforming of methane over ZrO2-Doped Ni/ZSM-5 nanostructured catalyst prepared by ultrasound assisted sequential impregnation method, Journal of Power Sources, 272: 816-827, doi.org/10.1016/j.jpowsour.2014.08.123. ##
[13]. Martınez R, Romero E, Guimon C, Bilbao R (2004) CO2 reforming of methane over coprecipitated Ni–Al catalysts modified with lanthanum, Applied Catalysis A: General, 274, 1-2: 139-149, doi.org/10.1016/j.apcata.2004.06.017. ##
[14]. Jabbour K, Massiani P, Davidson A, Casale S, El Hassan N (2017) Ordered mesoporous “one-pot” synthesized Ni-Mg (Ca)-Al2O3 as effective and remarkably stable catalysts for combined steam and dry reforming of methane (CSDRM), Applied Catalysis B: Environmental, 201: 527-542, doi.org/10.1016/j.apcatb.2016.08.009. ##
[15]. Li D, Li R, Lu M, Lin X, Zhan Y, Jiang L (2017) Carbon dioxide reforming of methane over Ru catalysts supported on Mg-Al oxides: A highly dispersed and stable Ru/Mg (Al) O catalyst, Applied Catalysis B: Environmental, 200: 566-577, doi.org/10.1016/j.apcatb.2016.07.050. ##
[16]. Sajjadi S M, Haghighi M, Rahmani F (2014) Dry reforming of greenhouse gases CH4/CO2 over MgO-promoted Ni–Co/Al2O3–ZrO2 nanocatalyst: effect of MgO addition via sol–gel method on catalytic properties and hydrogen yield, Journal of Sol-gel Science and Technology, 70: 111-124. ##
[17]. Song J H, Han S J, Yoo J, Park S, Kim D H, Song I K (2016) Effect of Sr content on hydrogen production by steam reforming of ethanol over Ni-Sr/Al2O3-ZrO2 xerogel catalysts, Journal of Molecular Catalysis A: Chemical, 418: 68-77, doi.org/10.1016/j.molcata.2016.03.035. ##
[18]. Singha R K, Shukla A, Yadav A, Adak S, Iqbal Z, Siddiqui N, Bal R (2016) Energy efficient methane tri-reforming for synthesis gas production over highly coke resistant nanocrystalline Ni–ZrO2 catalyst, Applied Energy, 178: 110-125, doi.org/10.1016/j.apenergy.2016.06.043. ##
[19]. Rezaei M, Alavi S M, Sahebdelfar S, Bai P, Liu X, Yan Z F (2008) CO2 reforming of CH4 over nanocrystalline zirconia-supported nickel catalysts, Applied Catalysis B: Environmental, 77, 3-4: 346-354, doi.org/10.1016/j.apcatb.2007.08.004. ##
[20]. San-José-Alonso D, Juan-Juan J, Illán-Gómez M J, Román-Martínez M C, Ni, Co and bimetallic Ni-Co catalysts for the dry reforming of methane, Applied Catalysis A:General, 371, 54-59, doi.org/10.1016/j.apcata.2009.09.026. ##
[21]. Zhang J, Wang H, Dalai A K (2007) Development of stable bimetallic catalysts for carbon dioxide reforming of methane, Journal of Catalysis, 249, 2: 300-310, doi.org/10.1016/j.jcat.2007.05.004. ##
[22]. Therdthianwong S, Siangchin C, Therdthianwong A (2008) Improvement of coke resistance of Ni/Al2O3 catalyst in CH4/CO2reforming by ZrO2 addition, Fuel Processing Technology, 89, 160–168, doi.org/10.1016/j.Fuproc.2007.09.003. ##
[23]. Rahemi N, Haghighi M, Babaluo A A, Fallah Jafari M, Estifaee P (2013) Synthesis and physicochemical characterizations of Ni/Al2O3-ZrO2 nanocatalyst prepared via impregnation method and treated with non-thermal plasma for CO2 reforming of CH4, Journal of Industrial and Engineering Chemistry, 19: 1566-1576, doi.org/10.1016/j.jiec.2013.01.024. ##
[24]. Hou T, Zhang S, Xu T, Cai W (2014) Hydrogen production from oxidative steam reforming of ethanol over Ir/CeO2 catalysts in a micro-channel reactor, Chemical Engineering Journal, 255: 149-155, doi.org/10.1016/j.cej.2014.06.046. ##
[25]. Kumar V, Paraschivoiu M, Nigam K D P (2011) Single-phase fluid flow and mixing in microchannels, Chemical Engineering Science, 66, 7: 1329-1373, doi.org/10.1016/j.ces.2010.08.016. ##
[26]. Mahan J E (2000) Physical vapor deposition of thin films, 336. ##
[27]. Rezaei R, Moradi G (2018) Study of the performance of dry methane reforming in a microchannel reactor using sputtered Ni/Al2O3 coating on stainless steel, International Journal of Hydrogen Energy, 43, 46: 21374-21385, doi.org/10.1016/j.ijhydene.2018.09.200. ##
[28]. Mahboob S, Haghighi M, Rahmani F (2017) Sonochemically preparation and characterization of bimetallic Ni-Co/Al2O3-ZrO2 nanocatalyst: Effects of ultrasound irradiation time and power on catalytic properties and activity in dry reforming of CH4, Ultrasonics Sonochemistry, 38: 38-49, doi.org/10.1016/j.ultsonch.2017.02.039. ##
[29]. شریفی م، حقیقی م، علیزاده اسلامی ع، رحمانی ف، راحمی ن. (1394) سنتز و تعیین خصوصیات نانوکاتالیست با استفاده از روشهای Ni-Cu/Al2O3-ZrO2 تلقیح متوالی و سل- ژل جهت استفاده در تبدیل متان و دی اکسیدکربن به گاز سنتز، مجله پژوهش نفت، دوره 25 شماره: 85-1، صفحات 157-142، dor 20.1001.1.23452900.1394.25.185.11.5. ##
[30]. Forutan H R, Karimi E, Hafizi A, Rahimpour M R, Keshavarz P (2015) Expert representation chemical looping reforming: A comparative study of Fe, Mn, Co and Cu as oxygen carriers supported on Al2O3, Journal of Industrial and Engineering Chemistry, 21: 900-911, doi.org/10.1016/j.jiec.2014.04.031. ##
[31]. Nataj S M M, Alavi S M, Mazloom G (2018) Modeling and optimization of methane dry reforming over Ni–Cu/Al2O3 catalyst using Box–Behnken design, Journal of Energy Chemistry, 27, 5: 1475-1488, doi.org/10.1016/j.jechem.2017.10.002. ##
[32]. Nikoo M K, Amin N A S (2011) Thermodynamic analysis of carbon dioxide reforming of methane in view of solid carbon formation, Fuel Processing Technology, 92, 3: 678-691, doi.org/10.1016/j.fuproc.2010.11.027. ##
[33] Chen Q, Zhang J, Pan B, Kong W, Chen Y, Zhang, W, Sun Y (2017) Temperature-dependent anti-coking behaviors of highly stable Ni-CaO-ZrO2 nanocomposite catalysts for CO2 reforming of methane, Chemical Engineering Journal, 320: 63-73, doi.org/10.1016/j.cej.2017.03.029. ##
[34]. Zhang J, Wang H, Dalai A K (2008) Effects of metal content on activity and stability of Ni-Co bimetallic catalysts for CO2 reforming of CH4, Applied Catalysis A: General, 339: 121-129, doi.org/10.1016/j.apcata.2008.01.027. ##
[35]. Rad S J H, Haghighi M, Eslami A A, Rahmani F, Rahemi N (2016) Sol–gel vs. impregnation preparation of MgO and CeO2 doped Ni/Al2O3 nanocatalysts used in dry reforming of methane: Effect of process conditions, synthesis method and support composition, International Journal of Hydrogen Energy, 41, 11: 5335-5350, doi.org/10.1016/j.ijhydene.2016.02.002. ##
[36]. Sharifi M, Haghighi M, Rahmani F, Karimipour S (2014) Syngas production via dry reforming of CH4 over Co-and Cu-promoted Ni/Al2O3–ZrO2 nanocatalysts synthesized via sequential impregnation and sol–gel methods, Journal of Natural Gas Science and Engineering, 21: 993-1004, doi.org/10.1016/j.jngse.2014.10.030. ##
[37]. Al-Fatesh A S, Abu-Dahrieh J K, Atia H, Armbruster U, Ibrahim A A, Khan W U, Fakeeha A H (2019) Effect of pre-treatment and calcination temperature on Al2O3-ZrO2 supported Ni-Co catalysts for dry reforming of methane, International Journal of Hydrogen Energy, 44, 39: 21546-21558, doi.org/10.1016/j.ijhydene.2019.06.085. ##