[1]. Energy Information Administration (2011) WEO Special Report: Are we entering a golden age?. https://www.iea.org/reports/weo-special-report-are-we-entering-a-golden-age.##
[2]. Linga P, Chen G, Liang W, Lu Y, Peng S (2021) Virtual Special Issue of Recent Research Advances in China: Unconventional Gas, Energy and Fuels, 35, 13: 10341–10346, doi.org/10.1021/acs.energyfuels.1c01663. ##
[3]. کدخدائی ایلخچی ر، رضایی ر، موسوی حرمی سر، کدخدائی ایلخچی ع (1396) بررسی لایههای زغالی درون ماسهسنگهای گازی میدان ویچررنج واقع درحوضه پرت، استرالیای غربی. پژوهش نفت. 27: 70-60. ##
[4]. U.S. Energy Information Administration (EIA) (2022). https://www.eia.gov/analysis/studies/worldshalegas. ##
[5]. Sun C, Nie H, Dang W, Chen Q, Zhang G, Li W, Lu Z (2021) Shale gas exploration and development in China: current status, geological challenges, and future directions, Energy and Fuels, 35, 8: 6359–6379. ##
[6]. Shabani M, Moallemi S A, Krooss B M, Amann-Hildenbrand A, Zamani-Pozveh Z, Ghalavand H, Littke R (2018) Methane sorption and storage characteristics of organic-rich carbonaceous rocks, Lurestan province, southwest Iran, International Journal of Coal Geology, 186: 51–64. ##
[7]. Vafaie A, Habibnia B, Moallemi S A (2015) Experimental investigation of the pore structure characteristics of the Garau gas shale formation in the Lurestan Basin, Iran, Journal of Natural Gas Science and Engineering, 27: 432–442, doi.org/10.1016/j.jngse.2015.06.029. ##
[8]. Kamali M R, Rezaee M R (2012) Identification and evaluation of unconventional hydrocarbon reserves: examples from Zagros and Central Iran Basins, Journal of Petroleum Science and Technology, 2, 1: 27–36. ##
[9]. Etminan S R, Javadpour F, Maini B B, Chen Z (2014) Measurement of gas storage processes in shale and of the molecular diffusion coefficient in kerogen, International Journal of Coal Geology, 123: 10–19, doi.org/10.1016/j.coal.2013.10.007. ##
[10]. Rani S, Padmanabhan E, Prusty B K (2019) Review of gas adsorption in shales for enhanced methane recovery and CO2 storage, Journal of Petroleum Science and Engineering, 175: 634–643, doi.org/10.1016/j.petrol.2018.12.081. ##
[11]. Ghoreishian Amiri S A, Sadrnejad S A, Ghasemzadeh H (2017) A hybrid numerical model for multiphase fluid flow in a deformable porous medium, Applied Mathematical Modelling, 45: 881–899, doi.org/10.1016/j.apm.2017.01.042. ##
[12]. Ghasemzadeh H, Pasand M S (2019) An elastoplastic multiscale, Multiphysics mixed geomechanical model for oil reservoirs using adaptive mesh refinement methods, International Journal for Multiscale Computational Engineering, 17, 4: 385–409, doi: 10.1615/IntJMultCompEng.2019029774. ##
[13]. Hall F E, Chunhe Z, Gasem K A M, Robinson R L, Dan Y (1994) Adsorption of pure methane, nitrogen, and carbon dioxide and their binary mixtures on wet fruitland coal, SPE Eastern Regional Meeting, doi.org/10.2118/29194-MS. ##
[14]. Jian X, Liu R, Tang S, Lin W, Zhang Q, Jia L (2017) Pore Characteristics of the Upper Carboniferous Taiyuan Shale in Liaohe Depression. Journal of Petroleum Science and Technology, 7, 3: 67–83, doi:10.22078/JPST.2017.803. ##
[15]. Curtis J B (2002) Fractured shale-gas systems, Am Assoc Pet Geol Bull. 86, 11: 1921–1938. ##
[16]. Pang W, Wang Y, Jin Z (2021) Comprehensive review about methane adsorption in shale nanoporous media, Energy and Fuels, 35, 10: 8456–8493, doi.org/10.1021/acs.energyfuels.1c00357. ##
[17]. Clarkson C R, Solano N, Bustin R M, Bustin A M M, Chalmers G R L, He L, Melnichenko Y B, Radliński A P, Blach T P (2013) Pore structure characterization of North American shale gas reservoirs using USANS/SANS, gas adsorption, and mercury intrusion, Fuel, 103: 606–616, doi.org/10.1016/j.fuel.2012.06.119. ##
[18]. Tang X, Ripepi N, Luxbacher K, Pitcher E (2017) Adsorption Models for Methane in Shales: Review, Comparison, and Application, Energy and Fuels, 31, 10: 10787–10801, doi.org/10.1021/acs.energyfuels.7b01948. ##
[19]. Yang F, Xie C, Xu S, Ning Z, Krooss B M (2017) Supercritical methane sorption on organic-rich shales over a wide temperature range, Energy and Fuels, 31, 12: 13427–13438, doi.org/10.1021/acs.energyfuels.7b02628. ##
[20]. Zhao T, Li X, Ning Z, Zhao H, Li M (2018) Molecular simulation of methane adsorption on type II kerogen with the impact of water content, Journal of Petroleum Science and Engineering, 161: 302–310, doi.org/10.1016/j.petrol.2017.11.072. ##
[21]. Gibbs J W (1878) On the equilibrium of heterogeneous substances, American Journal of Science, s3-16(96), 441–458.
[22]. Swenson H, Stadie N P (2019) Langmuir’s theory of adsorption: a centennial review, Langmuir, 35, 16: 5409–5426, doi.org/10.1021/acs.langmuir.9b00154. ##
[23]. Langmuir I (2002) The Adsorption of gases on plane surfaces of glass, mica ad platinum, Journal of the American Chemical Society, 40, 9: 1361–1403, doi.org/10.1021/ja02242a004. ##
[24]. Brandani S, Mangano E, Sarkisov L (2016) Net, excess and absolute adsorption and adsorption of helium, Adsorption, 22, 2: 261–276. ##
[25]. Li J, Chen Z, Wu K, Wang K, Luo J, Feng D, Qu S, Li X (2018) A multi-site model to determine supercritical methane adsorption in energetically heterogeneous shales, Chemical Engineering Journal, 349: 438–455, doi.org/10.1016/j.cej.2018.05.105. ##
[26]. Ghasemzadeh H, Babaei S, Tesson S, Azamat J, Ostadhassan M (2021) From excess to absolute adsorption isotherm: The effect of the adsorbed density, Chemical Engineering Journal, 425: 131495, doi.org/10.1016/j.cej.2021.131495. ##
[27]. Wang T, Tian S, Li G, Zhang L, Sheng M, Ren W (2021) Molecular simulation of gas adsorption in shale nanopores: A critical review, Renewable and Sustainable Energy Reviews, 149: 111391, doi.org/10.1016/j.rser.2021.111391. ##
[28]. Pang W, He Y, Yan C, Jin Z (2019) Tackling the challenges in the estimation of methane absolute adsorption in kerogen nanoporous media from molecular and analytical approaches, Fuel, 242: 687–698, doi.org/10.1016/j.Fuel.2019.01.059. ##
[29]. Liu Y, Li H A, Tian Y, Jin Z, Deng H (2018) Determination of the absolute adsorption/desorption isotherms of CH4 and n-C4H10 on shale from a nano-scale perspective, Fuel, 218: 67–77, doi.org/10.1016/j.fuel.2018.01.012. ##
[30]. قاسمزاده ح، بابائی س (1401) تعیین جذب مطلق همدما در مخازن شیل گازی. نشریه علمی ژئومکانیک نفت. 5: 16-1، JPG.2022.336239.1162ا/10.22107:## doi
[31]. Liu B, Babaei S, Bai L, Tian S, Ghasemzadeh H, Rashidi M, Ostadhassan M (2022) A dilemma in calculating ethane absolute adsorption in shale gas reservoirs: A theoretical approach, Chemical Engineering Journal, 450, P3: 138242, doi.org/10.1016/j.cej.2022.138242. ##
[32]. Alavi S (2020) Molecular simulations: fundamentals and practice, Wiley. ##
[33]. Kalkreuth W, Holz M, Casagrande J, Cruz R, Oliveira T, Kern M, Levandowski J, Rolim S (2008) The Coal bed Methane (CBM) potential of the Santa Terezinha coal field - 3D modeling and evaluation of exploration well CBM001-ST-RS. Rev. Bras, Revista Brasileira de Geociencias, 38, 2: 3–17. ##
[34]. Zhang M, Li J, Zhao J, Cui Y, Luo X (2020) Comparison of CH4 and CO2 adsorptions onto calcite (10.4), aragonite (011) Ca, and vaterite (010) CO3 surfaces: An MD and DFT investigation, ACS Omega, 5, 20: 11369–11377, doi.org/10.1021/acsomega.0c00345. ##
[35]. Spera M B M, Franco L F M (2021) The effect of thermal gradients on adsorption. Fuel, 295, 120553, doi.org/10.1016/j.fuel.2021.120553. ##
[36]. Ravipati S, Santos M S, Economou I G, Galindo A, Jackson G, Haslam A J (2021) Monte carlo molecular simulation study of carbon dioxide sequestration into dry and wet calcite pores containing methane, Energy and Fuels, 14: 11393–11402. ##
[37]. Wang S, Feng Q, Javadpour F, Yang Y B (2016) Breakdown of fast mass transport of methane through calcite nanopores, Journal of Physical Chemistry C, 120, 26: 14260–14269, doi.org/10.1021/acs.jpcc.6b05511. ##
[38]. Martin G M, Siepmann J I (1998) Transferable potentials for phase equilibria. 1. united-atom description of n-alkanes, The Journal of Physical Chemistry B, 2569–2577. ##
[39]. Xiao S, Edwards S A, Gräter F (2011) A New transferable forcefield for simulating the mechanics of CaCO3 Crystals, Journal of Physical Chemistry C, 115, 41: 20067–20075, doi.org/10.1021/jp202743v. ##
[40]. Ho T A, Striolo A (2015) Water and methane in shale rocks: Flow pattern effects on fluid transport and pore structure, AIChE Journal, 61(9), 2993–2999, doi: 10.1007/978-3-319-47003-05. ##
[41]. فاضل عبدلآبادی ب، علیزاده مجرد ع ا (1396) مطالعه رفتار جذب و خواص دینامیکی مخلوط هیدروکربن-آب-گاز اسیدی در فضای نانوحفرات کربناته و کائولینیتی با استفاده از روش شبیهسازی دینامیک مولکولی. پژوهش نفت، 27: 91-82،
1960.pr.2017.2001 / ##doi:0.22278d
[42]. Lorentz H A (1881) Ueber die anwendung des satzes vom virial in der kinetischen theorie der gase, Annalen Der Physik, 248, 1: 127–136. ##
[43]. Thompson A P, Aktulga H M, Berger R, Bolintineanu D S, Brown W M, Crozier P S, in ’t Veld P J, Kohlmeyer A, Moore S G, Nguyen T D, Shan R, Stevens M J, Tranchida J, Trott C, Plimpton S J (2022) LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales, Computer Physics Communications, 271: 108171, doi.org/10.1016/j.cpc.2021.108171. ##
[44]. Jablonka K M, Ongari D, Smit B (2019) Applicability of tail corrections in the molecular simulations of porous materials, Journal of Chemical Theory and Computation, 15, 10: 5635–5641, doi.org/10.1021/acs.jctc.9b00586. ##
[45]. Huang L, Zhou W, Xu H, Wang L, Zou J, Zhou Q (2021) Dynamic fluid states in organic-inorganic nanocomposite: Implications for shale gas recovery and CO2 sequestration, Chemical Engineering Journal, 411, 128423, doi.org/10.1016/j.cej.2021.128423. ##
[46]. Nosé S (1998) A unified formulation of the constant temperature molecular dynamics methods, The Journal of Chemical Physics, 81, 1: 511, doi.org/10.1063/1.447334. ##
[47]. NIST Standard Reference Database Number 69, https://webbook.nist.gov/chemistry. ##
[48]. Pang W, Jin Z (2020) Methane absolute adsorption in kerogen nanoporous media with realistic continuous pore size distributions, Energy and Fuels, doi.org/10.1021/acs.energyfuels.0c01886. ##
[49]. Tian Y, Yan C, Jin Z (2017) Characterization of methane excess and absolute adsorption in various clay nanopores from molecular simulation, Scientific Reports, 7, 1: 1–21, doi.org/10.1021/acs.energyfuels.0c01886. ##
[50]. Chen G, Zhang J, Lu S, Pervukhina M, Liu K, Xue Q, Tian H, Tian S, Li J, Clennell M B, Dewhurst D N (2016) Adsorption Behavior of Hydrocarbon on Illite, Energy and Fuels, 30, 11: 9114–9121, doi.org/10.1021/acs.energyfuels.6b01777. ##
[51]. Wang S, Feng Q, Javadpour F, Hu Q, Wu K (2019) Competitive adsorption of methane and ethane in montmorillonite nanopores of shale at supercritical conditions: A grand canonical Monte Carlo simulation study, Chemical Engineering Journal, 355: 76–90, doi.org/10.1016/j.cej.2018.08.067. ##
[52]. Sarkisov L, Bueno-Perez R, Sutharson M, Fairen-Jimenez D (2020) Materials informatics with poreblazer v4.0 and the CSD MOF database, Chemistry of Materials, 32: 9849–9867, doi.org/10.1021/acs.chemmater.0c03575. ##
[53]. Chen G, Lu S, Zhang J, Xue Q, Han T, Xue H, Tian S, Li J, Xu C, Pervukhina M (2017) Keys to linking GCMC simulations and shale gas adsorption experiments, Fuel, 199: 14–21, doi.org/10.1016/j.fuel.2017.02.063. ##
[54]. Tang X, Ripepi N, Rigby S, Mokaya R, Gilliland E (2019) New perspectives on supercritical methane adsorption in shales and associated thermodynamics, Journal of Industrial and Engineering Chemistry, 78: 186–197, doi.org/10.1016/j.jiec.2019.06.015. ##