مطالعه جذب سطحی متان درون منافذ کانی کلسیت در مخازن شیل گازی با روش شبیه سازی مولکولی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه ژئوتکنیک، دانشکده مهندسی عمران، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران

2 موسسه نفت و گاز غیرمتعارف، دانشگاه نفت شمال شرقی، داکینگ، چین/موسسه علوم‌زمین، دانشگاه کیل، کیل، آلمان/گروه زمین‌شناسی، دانشکده علوم، دانشگاه فردوسی مشهد، ایران

3 پردیس پژوهش و توسعه صنایع بالادستی نفت، پژوهشگاه صنعت نفت، تهران، ایران

4 مدیریت اکتشاف شرکت ملی نفت ایران، تهران، ایران

5 گروه علوم زمین، دانشکده علوم طبیعی، دانشگاه تبریز، ایران

چکیده

محاسبه صحیح میزان جذب سطحی مطلق سیال متان درون نانومنافذ مخازن شیل گاز به منظور تخمین حجم گاز درجا یکی از کلیدی‌ترین پارامترها است. در مطالعات آزمایشگاهی تنها همدمای جذب سطحی اضافی به صورت مستقیم قابل اندازه‌گیری است و برای محاسبه همدمای جذب سطحی مطلق، نیاز به معلوم بودن پارامتر چگالی جذب شده می‌باشد. بدین منظور در اکثر مطالعات با استفاده از مقداری ثابت برای این پارامتر و با به کار بردن مدل جذب لانگمویر، همدمای جذب سطحی مطلق محاسبه می‌شود. در پژوهش حاضر با استفاده از روش شبیه‌سازی مولکولی به مطالعه دقیق‌تر نحوه محاسبه چگالی جذب شده در کانی کلسیت پرداخت شده است. بدین منظور سیال متان درون کانی کلسیت با سایز منفذ 4 نانومتر در دماهای 30 و 90 درجه ‌سانتی‌گراد و فشار تا 50 مگاپاسکال شبیه‌سازی و به بررسی اثرات دما و فشار در مقدار جذب سطحی و چگالی جذب شده پرداخت شده است. این مطالعه نشان داد که مقدار جذب سطحی، با افزایش فشار و دما، به ترتیب افزایش و کاهش می‌یابد. همچنین نتایج حاکی از آن است که استفاده از مدل جذب لانگمویر با چگالی جذب شده ثابت، برای تخمین جذب سطحی مطلق مقادیر کمتری نسبت به مقدار واقعی از خود نشان می‌دهد و با افزایش فشار، این خطا افزایش می‌یابد و استفاده از چگالی جذب شده بدست آمده از شبیه‌سازی مولکولی به منظور تبدیل همدمای جذب سطحی اضافی به مطلق می‌تواند نتایج قابل قبولی ارائه دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Study of methane adsorption in calcite mineral pores in shale gas reservoirs by molecular simulations

نویسندگان [English]

  • Saeed Babaei 1
  • Mehdi Ostadhassan 2
  • Seyed Ali Moallemi 3
  • Mehrab Rashidi 4
  • Hasan Ghasemzadeh 1
  • Ali Kadkhodaie 5
1 Geo-techinqe Department, Civil Engineering Faculty, K. N. Toosi University of Technology, Tehran, Iran
2 State Key Laboratory of Continental Shale Hydrocarbon Accumulation and Efficient Development, Ministry of Education, Northeast Petroleum University, China\Institute of Geosciences, Marine and Land Geomechanics and Geotectonics, Christian-Albrechts-U
3 Research Institute of Petroleum InduUpstream and Development Technologies Research Center, Research Institute of Petroleum Industry (RIPI), Tehran, Iran stry (RIPI), Tehran, Iran
4 Exploration Directorate, National Iranian Oil Company (NIOC), Tehran, Iran
5 Earth Sciences Department, Faculty of Natural Science, University of Tabriz, Iran
چکیده [English]

An accurate estimation of methane absolute adsorption in nanopores of shale gas is crucial for a good estimation of gas in place (GIP). However, experimental studies would only provide us with the excess adsorption isotherm directly. In this regard, knowing the adsorbed density is necessary to calculate the absolute adsorption. For this purpose, most researchers calculate the absolute adsorption isotherm via the Langmuir adsorption model with a constant value for the adsorbed density. In the present study, using hybrid grand canonical Monte Carlo/molecular dynamics simulations, we explained how to improve the calculation of the adsorbed density in calcite. For this purpose, methane inside calcite mineral with a pore size of 4 nm at temperatures of 30 and 90 °C and pressures up to 50 MPa is simulated, and the effects of temperature and pressure on the amount of adsorption and adsorbed density are investigated. This study showed that adsorbed density increases and decreases with increasing pressure and temperature, respectively. The results verify that the Langmuir adsorption model with constant adsorbed density will underestimate the absolute adsorption capacity, which is exacerbated with pressure. Finally, the adsorbed density obtained from molecular simulations to convert excess adsorption to absolute values can provide acceptable results that can be improved the GIP assessments.

کلیدواژه‌ها [English]

  • Shale gas
  • Adsorption
  • Adsorbed phase density
  • Calcite
  • Langmuir
  • Molecular simulations
[1]. Energy Information Administration (2011) WEO Special Report: Are we entering a golden age?. https://www.iea.org/reports/weo-special-report-are-we-entering-a-golden-age.##
[2]. Linga P, Chen G, Liang W, Lu Y, Peng S (2021) Virtual Special Issue of Recent Research Advances in China: Unconventional Gas, Energy and Fuels, 35, 13: 10341–10346, doi.org/10.1021/acs.energyfuels.1c01663. ##
[3]. کدخدائی ایلخچی ر، رضایی ر، موسوی حرمی سر، کدخدائی ایلخچی ع (1396) بررسی لایه‌های زغالی درون ماسه‌سنگ‌های گازی میدان ویچررنج واقع درحوضه پرت، استرالیای غربی. پژوهش نفت. 27: 70-60. ##
[4]. U.S. Energy Information Administration (EIA) (2022). https://www.eia.gov/analysis/studies/worldshalegas. ##
[5]. Sun C, Nie H, Dang W, Chen Q, Zhang G, Li W, Lu Z (2021) Shale gas exploration and development in China: current status, geological challenges, and future directions, Energy and Fuels, 35, 8: 6359–6379. ##
[6]. Shabani M, Moallemi S A, Krooss B M, Amann-Hildenbrand A, Zamani-Pozveh Z, Ghalavand H, Littke R (2018) Methane sorption and storage characteristics of organic-rich carbonaceous rocks, Lurestan province, southwest Iran, International Journal of Coal Geology, 186: 51–64. ##
[7]. Vafaie A, Habibnia B, Moallemi S A (2015) Experimental investigation of the pore structure characteristics of the Garau gas shale formation in the Lurestan Basin, Iran, Journal of Natural Gas Science and Engineering, 27: 432–442, doi.org/10.1016/j.jngse.2015.06.029. ##
[8]. Kamali M R, Rezaee M R (2012) Identification and evaluation of unconventional hydrocarbon reserves: examples from Zagros and Central Iran Basins, Journal of Petroleum Science and Technology, 2, 1: 27–36. ##
[9]. Etminan S R, Javadpour F, Maini B B, Chen Z (2014) Measurement of gas storage processes in shale and of the molecular diffusion coefficient in kerogen, International Journal of Coal Geology, 123: 10–19, doi.org/10.1016/j.coal.2013.10.007. ##
[10]. Rani S, Padmanabhan E, Prusty B K (2019) Review of gas adsorption in shales for enhanced methane recovery and CO2 storage, Journal of Petroleum Science and Engineering, 175: 634–643, doi.org/10.1016/j.petrol.2018.12.081. ##
[11]. Ghoreishian Amiri S A, Sadrnejad S A, Ghasemzadeh H (2017) A hybrid numerical model for multiphase fluid flow in a deformable porous medium, Applied Mathematical Modelling, 45: 881–899, doi.org/10.1016/j.apm.2017.01.042. ##
[12]. Ghasemzadeh H, Pasand M S (2019) An elastoplastic multiscale, Multiphysics mixed geomechanical model for oil reservoirs using adaptive mesh refinement methods, International Journal for Multiscale Computational Engineering, 17, 4: 385–409, doi: 10.1615/IntJMultCompEng.2019029774. ##
[13]. Hall F E, Chunhe Z, Gasem K A M, Robinson R L, Dan Y (1994) Adsorption of pure methane, nitrogen, and carbon dioxide and their binary mixtures on wet fruitland coal, SPE Eastern Regional Meeting, doi.org/10.2118/29194-MS. ##
[14]. Jian X, Liu R, Tang S, Lin W, Zhang Q, Jia L (2017) Pore Characteristics of the Upper Carboniferous Taiyuan Shale in Liaohe Depression. Journal of Petroleum Science and Technology, 7, 3: 67–83, doi:10.22078/JPST.2017.803. ##
[15]. Curtis J B (2002) Fractured shale-gas systems, Am Assoc Pet Geol Bull. 86, 11: 1921–1938. ##
[16]. Pang W, Wang Y, Jin Z (2021) Comprehensive review about methane adsorption in shale nanoporous media, Energy and Fuels, 35, 10: 8456–8493, doi.org/10.1021/acs.energyfuels.1c00357. ##
[17]. Clarkson C R, Solano N, Bustin R M, Bustin A M M, Chalmers G R L, He L, Melnichenko Y B, Radliński A P, Blach T P (2013) Pore structure characterization of North American shale gas reservoirs using USANS/SANS, gas adsorption, and mercury intrusion, Fuel, 103: 606–616, doi.org/10.1016/j.fuel.2012.06.119. ##
[18]. Tang X, Ripepi N, Luxbacher K, Pitcher E (2017) Adsorption Models for Methane in Shales: Review, Comparison, and Application, Energy and Fuels, 31, 10: 10787–10801, doi.org/10.1021/acs.energyfuels.7b01948. ##
[19]. Yang F, Xie C, Xu S, Ning Z, Krooss B M (2017) Supercritical methane sorption on organic-rich shales over a wide temperature range, Energy and Fuels, 31, 12: 13427–13438, doi.org/10.1021/acs.energyfuels.7b02628. ##
[20]. Zhao T, Li X, Ning Z, Zhao H, Li M (2018) Molecular simulation of methane adsorption on type II kerogen with the impact of water content, Journal of Petroleum Science and Engineering, 161: 302–310, doi.org/10.1016/j.petrol.2017.11.072. ##
[21]. Gibbs J W (1878) On the equilibrium of heterogeneous substances, American Journal of Science, s3-16(96), 441–458.
[22]. Swenson H, Stadie N P (2019) Langmuir’s theory of adsorption: a centennial review, Langmuir, 35, 16: 5409–5426, doi.org/10.1021/acs.langmuir.9b00154. ##
[23]. Langmuir I (2002) The Adsorption of gases on plane surfaces of glass, mica ad platinum, Journal of the American Chemical Society, 40, 9: 1361–1403, doi.org/10.1021/ja02242a004. ##
[24]. Brandani S, Mangano E, Sarkisov L (2016) Net, excess and absolute adsorption and adsorption of helium, Adsorption, 22, 2: 261–276. ##
[25]. Li J, Chen Z, Wu K, Wang K, Luo J, Feng D, Qu S, Li X (2018) A multi-site model to determine supercritical methane adsorption in energetically heterogeneous shales, Chemical Engineering Journal, 349: 438–455, doi.org/10.1016/j.cej.2018.05.105. ##
[26]. Ghasemzadeh H, Babaei S, Tesson S, Azamat J, Ostadhassan M (2021) From excess to absolute adsorption isotherm: The effect of the adsorbed density, Chemical Engineering Journal, 425: 131495, doi.org/10.1016/j.cej.2021.131495. ##
[27]. Wang T, Tian S, Li G, Zhang L, Sheng M, Ren W (2021) Molecular simulation of gas adsorption in shale nanopores: A critical review, Renewable and Sustainable Energy Reviews, 149: 111391, doi.org/10.1016/j.rser.2021.111391. ##
[28]. Pang W, He Y, Yan C, Jin Z (2019) Tackling the challenges in the estimation of methane absolute adsorption in kerogen nanoporous media from molecular and analytical approaches, Fuel, 242: 687–698, doi.org/10.1016/j.Fuel.2019.01.059. ##
[29]. Liu Y, Li H A, Tian Y, Jin Z, Deng H (2018) Determination of the absolute adsorption/desorption isotherms of CH4 and n-C4H10 on shale from a nano-scale perspective, Fuel, 218: 67–77, doi.org/10.1016/j.fuel.2018.01.012. ##
[30]. قاسم‌زاده ح، بابائی س (1401) تعیین جذب مطلق هم‌دما در مخازن شیل گازی. نشریه علمی ژئومکانیک نفت. 5: 16-1، JPG.2022.336239.1162ا/10.22107:## doi
[31]. Liu B, Babaei S, Bai L, Tian S, Ghasemzadeh H, Rashidi M, Ostadhassan M (2022) A dilemma in calculating ethane absolute adsorption in shale gas reservoirs: A theoretical approach, Chemical Engineering Journal, 450, P3: 138242, doi.org/10.1016/j.cej.2022.138242. ##
[32]. Alavi S (2020) Molecular simulations: fundamentals and practice, Wiley. ##
[33]. Kalkreuth W, Holz M, Casagrande J, Cruz R, Oliveira T, Kern M, Levandowski J, Rolim S (2008) The Coal bed Methane (CBM) potential of the Santa Terezinha coal field - 3D modeling and evaluation of exploration well CBM001-ST-RS. Rev. Bras, Revista Brasileira de Geociencias, 38, 2: 3–17. ##
[34]. Zhang M, Li J, Zhao J, Cui Y, Luo X (2020) Comparison of CH4 and CO2 adsorptions onto calcite (10.4), aragonite (011) Ca, and vaterite (010) CO3 surfaces: An MD and DFT investigation, ACS Omega, 5, 20: 11369–11377, doi.org/10.1021/acsomega.0c00345. ##
[35]. Spera M B M, Franco L F M (2021) The effect of thermal gradients on adsorption. Fuel, 295, 120553, doi.org/10.1016/j.fuel.2021.120553. ##
[36]. Ravipati S, Santos M S, Economou I G, Galindo A, Jackson G, Haslam A J (2021) Monte carlo molecular simulation study of carbon dioxide sequestration into dry and wet calcite pores containing methane, Energy and Fuels, 14: 11393–11402. ##
[37]. Wang S, Feng Q, Javadpour F, Yang Y B (2016) Breakdown of fast mass transport of methane through calcite nanopores, Journal of Physical Chemistry C, 120, 26: 14260–14269, doi.org/10.1021/acs.jpcc.6b05511. ##
[38]. Martin G M, Siepmann J I (1998) Transferable potentials for phase equilibria. 1. united-atom description of n-alkanes, The Journal of Physical Chemistry B, 2569–2577. ##
[39]. Xiao S, Edwards S A, Gräter F (2011) A New transferable forcefield for simulating the mechanics of CaCO3 Crystals, Journal of Physical Chemistry C, 115, 41: 20067–20075, doi.org/10.1021/jp202743v. ##
[40]. Ho T A, Striolo A (2015) Water and methane in shale rocks: Flow pattern effects on fluid transport and pore structure, AIChE Journal, 61(9), 2993–2999, doi: 10.1007/978-3-319-47003-05. ##
[41]. فاضل عبدل‌آبادی ب، علیزاده مجرد ع ا (1396) مطالعه رفتار جذب و خواص دینامیکی مخلوط هیدروکربن-آب-گاز اسیدی در فضای نانوحفرات کربناته و کائولینیتی با استفاده از روش شبیه‌سازی دینامیک مولکولی. پژوهش نفت، 27: 91-82،
 1960.pr.2017.2001 / ##doi:0.22278d
[42]. Lorentz H A (1881) Ueber die anwendung des satzes vom virial in der kinetischen theorie der gase, Annalen Der Physik, 248, 1: 127–136. ##
[43]. Thompson A P, Aktulga H M, Berger R, Bolintineanu D S, Brown W M, Crozier P S, in ’t Veld P J, Kohlmeyer A, Moore S G, Nguyen T D, Shan R, Stevens M J, Tranchida J, Trott C, Plimpton S J (2022) LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales, Computer Physics Communications, 271: 108171, doi.org/10.1016/j.cpc.2021.108171. ##
[44]. Jablonka K M, Ongari D, Smit B (2019) Applicability of tail corrections in the molecular simulations of porous materials, Journal of Chemical Theory and Computation, 15, 10: 5635–5641, doi.org/10.1021/acs.jctc.9b00586. ##
[45]. Huang L, Zhou W, Xu H, Wang L, Zou J, Zhou Q (2021) Dynamic fluid states in organic-inorganic nanocomposite: Implications for shale gas recovery and CO2 sequestration, Chemical Engineering Journal, 411, 128423, doi.org/10.1016/j.cej.2021.128423. ##
[46]. Nosé S (1998) A unified formulation of the constant temperature molecular dynamics methods, The Journal of Chemical Physics, 81, 1: 511, doi.org/10.1063/1.447334. ##
[47]. NIST Standard Reference Database Number 69, https://webbook.nist.gov/chemistry. ##
[48]. Pang W, Jin Z (2020) Methane absolute adsorption in kerogen nanoporous media with realistic continuous pore size distributions, Energy and Fuels, doi.org/10.1021/acs.energyfuels.0c01886. ##
[49]. Tian Y, Yan C, Jin Z (2017) Characterization of methane excess and absolute adsorption in various clay nanopores from molecular simulation, Scientific Reports, 7, 1: 1–21, doi.org/10.1021/acs.energyfuels.0c01886. ##
[50]. Chen G, Zhang J, Lu S, Pervukhina M, Liu K, Xue Q, Tian H, Tian S, Li J, Clennell M B, Dewhurst D N (2016) Adsorption Behavior of Hydrocarbon on Illite, Energy and Fuels, 30, 11: 9114–9121, doi.org/10.1021/acs.energyfuels.6b01777. ##
[51]. Wang S, Feng Q, Javadpour F, Hu Q, Wu K (2019) Competitive adsorption of methane and ethane in montmorillonite nanopores of shale at supercritical conditions: A grand canonical Monte Carlo simulation study, Chemical Engineering Journal, 355: 76–90, doi.org/10.1016/j.cej.2018.08.067. ##
[52]. Sarkisov L, Bueno-Perez R, Sutharson M, Fairen-Jimenez D (2020) Materials informatics with poreblazer v4.0 and the CSD MOF database, Chemistry of Materials, 32: 9849–9867, doi.org/10.1021/acs.chemmater.0c03575. ##
[53]. Chen G, Lu S, Zhang J, Xue Q, Han T, Xue H, Tian S, Li J, Xu C, Pervukhina M (2017) Keys to linking GCMC simulations and shale gas adsorption experiments, Fuel, 199: 14–21, doi.org/10.1016/j.fuel.2017.02.063. ##
[54]. Tang X, Ripepi N, Rigby S, Mokaya R, Gilliland E (2019) New perspectives on supercritical methane adsorption in shales and associated thermodynamics, Journal of Industrial and Engineering Chemistry, 78: 186–197, doi.org/10.1016/j.jiec.2019.06.015. ##