مطالعه آزمایشگاهی تأثیر شکاف از پیش موجود بر شکافت هیدرولیکی با استفاده از انتشار آوایی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی معدن، نفت و ژئوفیزیک، دانشگاه صنعتی شاهرود،‌ ایران

2 دانشکده مهندسی معدن، دانشگاه ولایت ایرانشهر، ایران

چکیده

عملیات شکافت هیدرولیکی به‌عنوان یکی از متداول‌ترین روش‌های ازدیاد برداشت چاه‌های نفت و گاز برای تولید مخازن نامتعارف و همچنین تولید بیشتر در مخازن، به‌کار برده می‌شود. تعیین راستای گسترش شکستگی و هندسه شبکه شکستگی ایجاد شده توسط فرآیند شکافت هیدرولیکی در افزایش نفوذپذیری مخزن نقش مهمی دارد. در این تحقیق به‌منظور درک بهتر مکانیزم ایجاد و گسترش ترک‌ها در فرآیند شکافت هیدرولیکی از انتشار آوایی (اکوستیک) استفاده شده است. آزمایش‌ها برروی نمونه‌های بلوکی بتنی تحت شرایط تنش سه محوره واقعی انجام شده و رفتارنگاری انتشار آوایی هم‌زمان با تزریق سیال به درون نمونه صورت گرفته است. به‌منظور بررسی رفتارهای انحراف ترک در فرآیند شکافت هیدرولیکی و تأثیر شکستگی‌های طبیعی سازند بر آن، از نمونه‌های شکاف‌دار استفاده شده است. نتایج این تحقیق نشان می‌دهند که شکاف از پیش موجود، فشار شکست نمونه‌ها را کاهش داده و مقدار اختلاف تنش افقی، مسیر انتشار ترک را در طول آزمایش شکافت هیدرولیکی تحت تأثیر قرار می‌دهد. از رفتارنگاری انتشار آوایی در حین آزمایش‌های شکافت هیدرولیکی نتیجه و پاسخ مفیدی در تحلیل فرآیند شکافت هیدرولیکی به‌دست آمده و تحلیل داده‌های انتشار آوایی نشان می‌دهند که نوع ترک‌های ایجاد شده، اغلب ترک‌های کششی هستند.
 

کلیدواژه‌ها


عنوان مقاله [English]

Laboratory Investigation of the Effect of Pre-existing Crack on Hydraulic Fracturing Using Acoustic Emission

نویسندگان [English]

  • Ali Esmailzadeh 1
  • Majid Nikkhah 1
  • Hamed Shirazi 2
1 Faculty of Mining, Petroleum and Geophysics Engineering, Shahrood University of Technology, Shahrood, Iran
2 Faculty of Engineering, Department of Mining Engineering, Velayat University, Iranshahr, Iran
چکیده [English]

Hydraulic fracturing is used as one of the most common methods of enhanced recovery oil and gas wells for the production of unconventional reservoirs as well as more production in reservoirs. Determining the direction of fracture propagation and the geometry of the fracture network created by the hydraulic fracturing process plays an important role in increasing the permeability of the reservoir. In this research, in order to better understand the mechanism of formation and expansion of cracks in the process of hydraulic fracturing, acoustic emission (AE) has been used. Experiments were performed on concrete block specimens under true triaxial stress conditions and acoustic emission monitoring was performed simultaneously with the injection of fluid into the specimen. In order to investigate the crack deflection behaviors in the hydraulic fracturing process and the effect of natural fractures on the formation, pre-cracked specimens have been used. The results of this study show the pre-manufactured crack reduce the fracture pressure of the specimens and the magnitude of the difference in horizontal stresses during the experiments clearly affects the crack propagation path during the hydraulic fracturing process. Acoustic emission monitoring during hydraulic fracturing experiments is a useful result, and answer in the analysis of the hydraulic fracturing process and the analysis of acoustic emission data show that the type of cracks created are often tensile cracks.
 

کلیدواژه‌ها [English]

  • Hydraulic Fracturing
  • Acoustic Emission
  • True Triaxial Stress
  • Pre-manufactured Crack
  • Enhanced Recovery
[1]. Ma Z (2000) Experimental studies of rock fracture behavior related to hydraulic fracture, MSc Thesis, University of Illinois at Chicago. ##
[2]. Hossain M M, Rahman M K, Rahman S S (2000) Hydraulic fracture initiation and propagation: roles of wellbore trajectory, perforation and stress regimes, Journal of Petroleum Science and Engineering, 27, 3-4: 129-149. ##
[3]. مرادی ا، تخم چی ب، رسولی و، فاتحی مرجی م (1395) تحلیل المان مرزی غیر مستقیم اندرکنش شکافت هیدرولیکی و شکست طبیعی در مخازن هیدروکربنی درزه دار. روش‌های تحلیلی و عددی در مهندسی معدن، 6 11: 88-77. ##
[4]. نقی دهقان ع، گشتاسبی ک، آهنگری ک، جین ی، میسکیمینس ج (1394) مکانیسم شروع و گسترش شکست با استفاده از یک سیستم آزمایش شکافت هیدرولیکی سه محوره برروی نمونه‎هایی از بلوک‌های سیمانی. پژوهش نفت، 25، 2-85: 198-180. ##
[5]. Nikkhah M, Ahmadi M, Ghazvinian A (2011) Application of pattern recognition analysis of rock acoustic emission for determination of Kaiser Effect, Proceedings of 12th International Congress on Rock Mechanics, China, 765-769. ##
[6]. Hampton J C (2012) Laboratory hydraulic fracture characterization using acoustic emission, MSc Thesis, Colorado School of Mines. ##
[7]. Li Q B (2015) Acoustic emissions in hydraulic fracturing of Barre granite.  Doctoral dissertation, Massachu setts Institute of Technology. ##
[8]. Veatch Jr R W, Moschovidis Z A, Fast C R (1989) An overview of hydraulic fracturing. Recent Advances in Hydraulic Fracturing, 12: 1-38. ##
[9]. Valkó P, Economides M J (1995) Hydraulic fracture mechanics, Chichester: Wiley 28. ##
[10]. Stanchits S, Surdi A, Edelman E, Suarez-Rivera R (2012) Acoustic emission and ultrasonic transmission monitoring of hydraulic fracture propagation in heterogeneous rock samples, 46th US Rock Mechanics /Geomechanics Symposium, OnePetro. ##
[11]. Alabbad E A (2014) Experimental investigation of geomechanical aspects of hydraulic fracturing unconventional formations, The University of Texas at Austin. ##
[12]. Stoeckhert F, Molenda M, Brenne S, Alber M (2015) Fracture propagation in sandstone and slate–Laboratory experiments, acoustic emissions and fracture mechanics, Journal of Rock Mechanics and Geotechnical Engineering, 7, 3: 237-249. ##
[13]. Stanchits S, Burghardt J, Surdi A (2015) Hydraulic fracturing of heterogeneous rock monitored by acoustic emission, Rock Mechanics and Rock Engineering, 48, 6: 2513-2527. ##
[14]. Zhao Z, Li X, WangY, Zheng B, Zhang B (2016) A Laboratory study of the effects of interbeds on hydraulic fracture propagation in shale formation, Energies, 9, 7: 556. ##
[15]. شیرازی ح (1395). مدل‌سازی آزمایشگاهی فرآیند شکافت هیدرولیکی در شرایط تنش سه محوره واقعی. رساله دکتری، دانشگاه صنعتی شاهرود. ##
[16]. Mao R, Feng Z, Liu Z, Zhao Y (2017) Laboratory hydraulic fracturing test on large-scale pre-cracked granite specimens, Journal of Natural Gas Science and Engineering, 44: 278-286. ##
[17]. Ning L, Shicheng Z, Yushi Z, Xinfang M, Shan W, Yinuo Z (2017) Experimental analysis of hydraulic fracture growth and acoustic emission response in a layered formation, Rock Mechanics and Rock Engineering, 51, 4: 1047-1062. ##
[18]. Xinfang M A, Ning, L I, Congbin, Y I N, Yanchao L, Yushi Z, Shan W, Tong Z H O U (2017) Hydraulic fracture propagation geometry and acoustic emission interpretation: A case study of Silurian Longmaxi Formation shale in Sichuan Basin, SW China, Petroleum Exploration and Development, 44, 6: 1030-1037. ##
[19]. Liang Y, Cheng Y, Zou Q, Wang W, Ma Y, Li Q (2017) Response characteristics of coal subjected to hydraulic fracturing: An evaluation based on real-time monitoring of borehole strain and acoustic emission, Journal of Natural Gas Science and Engineering, 38: 402-411. ##
[20]. Li N, Zhang S, Zou Y, Ma X, Zhang Z, Li S, Sun Y (2018) Acoustic emission response of laboratory hydraulic fracturing in layered shale, Rock Mechanics and Rock Engineering, 51, 11: 3395-3406. ##
[21]. Naoi M, Chen Y, Nishihara K, Yamamoto K, Yano S, Watanabe S., Ishida T (2018) Monitoring hydraulically-induced fractures in the laboratory using acoustic emissions and the fluorescent method, International Journal of Rock Mechanics and Mining Sciences, 104: 53-63. ##
[22]. Zhuang L, Kim K Y, Jung S G, Diaz M, Min K B, Zang A, Hofmann H (2019) Cyclic hydraulic fracturing of pocheon granite cores and its impact on breakdown pressure, acoustic emission amplitudes and injectivity, International Journal of Rock Mechanics and Mining Sciences, 122: 104065. ##
[23]. Wang J, Guo Y, Zhang K, Ren G, Ni J (2019) Experimental investigation on hydraulic fractures in the layered shale formation, Geofluids. ##
[24]. Jiang Z, Li Q, Hu Q, Liang Y, Xu Y, Liu L, Ling F (2020) Acoustic emission characteristics in hydraulic fracturing of stratified rocks: a laboratory study. Powder Technology, 371: 267-276. ##
[25]. Vallen Systeme, GmbH (2020). http://www.vallen.de, Wolfratshausen, Germany: The Acoustic Emission Company. ##
[26]. Grosse C U, Ohtsu M (2008) Acoustic emission testing, Springer Science and Business Media. ##
[27]. Sagar R V (2021) A probabilistic model of acoustic emissions generated during compression test of cementitious materials for crack mode classification, Indian Journal of Engineering and Materials Sciences (IJEMS), 27, 3: 537-553. ##
[28]. Zhang H, Wang Z, Song Z, Zhang Y, & Zhao W (2021) Acoustic emission characteristics of different brittle rocks and its application in brittleness evaluation, Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 7, 2: 1-14.                ##
[29]. Rao M V M S, Lakshmi K P (2005) Analysis of b-value and improved b-value of acoustic emissions accompanying rock fracture, Current Science, 1577-1582. ##
[30]. Farhidzadeh A, Salamone, S, Luna B, Whittaker A (2013) Acoustic emission monitoring of a reinforced concrete shear wall by b-value–based outlier analysis, Structural Health Monitoring, 12, 1: 3-13. ##
[31]. Shiotani T (2001) Application of the AE improved b-value to quantiative evaluation of fracture process in concrete-materials, Journal of Acoustic Emission, 19: 118-133. ##