بررسی نرخ‌های رسوب‌گذاری و فرونشست در دشت‌گرگان با استفاده از مدل‌سازی حوضه

نوع مقاله : مقاله پژوهشی

نویسندگان

پژوهشکده علوم زمین، پردیس توسعه صنایع بالادستی، پژوهشگاه صنعت نفت، تهران، ایران

چکیده

دشت‌گرگان در شمال ایران واقع شده و دارای گل‌فشان و افق‌های پرفشار است. از رسوبات میوسن و قدیمی‌تر این منطقه اطلاعات محدودی وجود دارد و داده‌های موجود از رسوبات پلیوسن و جوان‌تر، شناخت کاملی از زمین‌شناسی این ناحیه ارائه نمی‌دهد. عدم وجود فسیل‌های شاخص در رسوبات، تعیین سن و بررسی گسترش لایه‌ها را با ابهاماتی همراه کرده است. در این مطالعه نرخ‌های رسوب‌گذاری و فرونشست لایه‌های سنوزوئیک در دو چاه، با استفاده از نرم‌افزارهای مدل‌سازی حوضه مورد بررسی قرار گرفته است. رسوبات سنوزوئیک دشت‌گرگان شامل رسوبات پالئوسن-میوسن و سازندهای چلکن (پلیوسن پایینی)، آقچاگیل (پلیوسن بالایی)، آپشرون (پلیستوسن پایینی)، باکو (پلیستوسن بالایی) و نئوکاسپین (هلوسن) است که عمدتاً از ماسه‌سنگ و گل‌سنگ تشکیل شده‌اند. این مطالعه نشان می‌دهد، رسوبات ضخیم پلیوسن-عهد حاضر دشت‌گرگان با نرخ‌های بالا نهشته شده‌اند که هم‌زمان با افزایش فعالیت کوه‌زایی در منطقه و جدایش تدریجی حوضه‌خزرجنوبی از آب‌های آزاد و تغییر محیط رسوبی از دریایی به رودخانه‌ای-دلتایی است. نرخ‌های رسوب‌گذاری نهشته‌های سنوزوئیک به‌سمت بخش ساحلی دشت‌گرگان افزایش می‌یابند. کمترین نرخ‌های رسوب‌گذاری در نهشته‌های پالئوسن-ائوسن و بیشترین نرخ در سازند باکو (پلیستوسن بالایی) است. نرخ‌های رسوب‌گذاری بالا از عوامل شکل‌گیری گل‌فشان و افق‌های پرفشار در منطقه است و این نرخ‌ها می‌توانند تأثیر مهمی در عناصر و فرآیندهای سیستم‌نفتی ناحیه داشته باشند.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of Sedimentation and Subsidence Rates in Gorgan Plain Using Basin Modeling

نویسندگان [English]

  • Arsalan Zeinalzadeh
  • Javad Honarmand
  • Somayeh Parham
  • Katayoon Rezaeeparto
Geology Faculty, Research Institute of Petroleum Industry (RIPI), Tehran, Iran
چکیده [English]

The Gorgan Plain is located in the north of Iran and has mud volcanoes and high-pressure zones. There is limited information on Miocene and older sediments in this area and the available data on the Pliocene and younger sediments do not provide a complete understanding of the geology of these areas. The absence of marker fossils in the sediments has led to ambiguities in age determination and study of layers expansion in the study area. The Cenozoic sediments of Gorgan Plain which include Paleocene-Miocene sediments and Cheleken (Lower Pliocene), Akchagyl (Upper Pliocene), Apsheron (Lower Pleistocene), Baku (Upper Pleistocene) and Neo-Caspian (Holocene) formations, are mainly composed of sandstone and mudstone. This study shows that the thick Pliocene-Present sediments of Gorgan Plain were deposited at high rates, which was simultaneous with the increase in orogenic activity in the region and the gradual separation of the South Caspian Basin from open waters and the change of the sedimentary environment from marine to fluvial-deltaic. Sedimentation rates of Cenozoic deposits increase towards the coastal parts of the Gorgan Plain. The lowest sedimentation rates are in the Paleocene-Eocene deposits, and the highest rates are in the Baku Formation. High sedimentation rate is one of the controlling factors in the formation of mud volcanos and high-pressure zones in the region, and these rates can have a significant impact on the processes and elements of the petroleum system.
 

کلیدواژه‌ها [English]

  • Basin Modeling
  • Sedimentation Rate
  • Subsidence Rate
  • Cenozoic Sediments
  • Gorgan Plain
[1] . Asadi S, Moore F, Keshavarzi B (2012) The nature and provenance of Golestan loess deposits in northeast Iran, Geological Journal, 48: 646-660. ##
[2]. شرفی م، مرادپور م، بیرانوند ب، کهنسال پ، عبدالهی ا، طاعتی ف، مهاجر ح (1398) محیط رسوبی و چینه‌نگاری سکانسی یک سیستم بادبزن دریایی ژرف (پالئوسن)، البرز شمالی (ناحیه سوچلما)، دوفصلنامه رسوب‌شناسی کاربردی، 7: 34-20. ##
[3]. شرفی م، زینل‌زاده ا، بایت گل ئ، بیرانوند ب، مرادپور م، طاعتی ف (1400) توسعه سیستم رسوبی دلتایی (میوسن) در حوضه خزر جنوبی، فصلنامه علمی علوم زمین، 31: 94-83. ##
[4]. Zeinalzadeh A, Sharafi M, Mirshahani M, Shirzadi A (2021) Source rock evaluation and basin modelling in the Gorgan Plain, SE South Caspian Basin, northern Iran, Journal of Petroleum Geology, 44: 509-529. ##
[5]. شرفی م، بیرانوند ب، زینل‌زاده ا، بایت گل ئ، مرادپور م، کهنسال پ (1400) رخساره‌ها و محیط رسوبی سازند آیتامیر در دشت‌گرگان: مدلی از محیط حاشیة ساحلی زیر نفوذ امواج، پژوهش‌های چینه‌نگاری و رسوب‌شناسی، 37: 67-51. ##
[6]. Rad F K (1986) A jurassic delta in the eastern Alborz, NE Iran, Journal of Petroleum Geology, 9: 281-294. ##
[7]. Shekarifard A, Baudin F, Seyed-Emami K, Schnyder J, Laggoun-Defarge F, Riboulleau A, Brunet M-F, Shahidi A (2012) Thermal maturity of the upper triassic–middle Jurassic Shemshak Group (Alborz Range, Northern Iran) based on organic petrography, geochemistry and basin modelling: implications for source rock evaluation and petroleum exploration, Geological Magazine, 149: 19-38. ##
[8]. Soltani B, Beiranvand B, Moussavi-Harami R, Honarmand J, Taati F (2020) Facies analysis and depositional setting of the upper pliocene Akchagyl Formation in southeastern Caspian Basin, NE Iran, Carbonates and Evaporites, 35: 8. ##
[9]. زینل‌زاده ا (1390) ارزیابی سنگ‌های منشأ کژدمی و گدوان در چاه بی‌بی‌حکیمه 120، پژوهش نفت، 65، 21: 81-71.  ##
[10]. زینل‌زاده ا، موسوی‌حرمی س ر، محبوبی ا (1397) بررسی فرآیند نفت‌زایی سنگ منشأ کژدمی در گستره ناحیه‌تغذیه میدان دارخوین در دشت‌آبادان، پژوهش نفت، 28، 2: 58-46. ##
[11]. زینل‌زاده ا (1389) مدل‌سازی حرارتی یک‌بعدی رخنمون‌های سطحی، مثالی از کوه خامی و کوه میش، پژوهش نفت، 61، 20: 87-77. ##
[12]. Zeinalzadeh A (2020) Influence of folding on hydrocarbon generation: an example from the dezful embayment, Journal of Petroleum Science and Technology, 10: 30-38. ##
[13]. زینل‌زاده ا، موسوی‌حرمی س، کسایی نجفی م، میرشاهانی م (1394) مدل‌سازی فرآیند نفت‌زایی سنگ منشأ در مقاطع تراستی: مثالی از حوضه زاگرس، پژوهش نفت، 25، 83: 148-137. ##
[14]. Mazzini A, Etiope G (2017) Mud volcanism: An updated review, Earth-Science Reviews, 168: 81-112. ##
[15]. Nifuku K, Kobayashi Y, Araki Y, Ashida T, Taniwaki T (2021) Overpressure evolution controlled by spatial and temporal changes in the sedimentation rate: Insights from a basin modelling study in offshore Suriname, Basin Research, 33: 1293-1314. ##
[16]. Mouchet J P, Mitchell A (1989) Abnormal pressures while drilling: origins, prediction, detection, evaluation, Technip Editions, 2. ##
[17]. Fang H, Yongchuan S, Sitian L, Qiming Z (1995) Overpressure retardation of organic-matter maturation and petroleum generation: a case study from the yinggehai and qiongdongnan basins, South China Sea1, AAPG Bulletin, 79: 551-562. ##
[18]. Hantschel T, Kauerauf A I (2009) Fundamentals of basin and petroleum systems modeling, Springer, 476. ##
[19]. Bloch S, Lander R H, Bonnell L (2002) Anomalously high porosity and permeability in deeply buried sandstone reservoirs: Origin and predictability, American Association of Petroleum Geologists, 86: 301-328. ##
[20]. Stricker S, Jones S J, Sathar S, Bowen L, Oxtoby N (2016) Exceptional reservoir quality in HPHT reservoir settings: Examples from the Skagerrak Formation of the Heron Cluster, North Sea, UK., Marine and Petroleum Geology, 77: 198-215. ##
[21]. Allen M B, Jones S, Ismail-Zadeh A, Simmons M, Anderson L (2002) Onset of subduction as the cause of rapid pliocene-quaternary subsidence in the South Caspian basin, Geology, 30: 775-778. ##
[22]. Brunet M F, Korotaev M V, Ershov AV, Nikishin AM (2003) The South Caspian Basin: a review of its evolution from subsidence modelling, Sedimentary Geology, 156: 119-148. ##
[23]. Golonka J, Yilmaz P O, Isaksen G H (2007) Geodynamic evolution of the South Caspian Basin, In: Yilmaz PO, Isaksen GH, (Eds): oil and gas of the greater Caspian Area, American Association of Petroleum Geologists 55: 17-41. ##
[24]. Schulz H M, Bechtel A, Sachsenhofer R F (2005) The birth of the Paratethys during the Early Oligocene: From Tethys to an ancient Black Sea analogue? Global and Planetary Change, 49: 163-176. ##
[25]. Allen M, Armstrong H (2008) Arabia-Eurasia collision and the forcing of Mid-Cenozoic global cooling, Palaeogeography, Palaeoclimatology, Palaeoecology, 265: 52-58. ##
[26]. Rogl F (1999) Mediterranean and paratethys. facts and hypotheses of an oligocene to miocene paleogeography (short overview), Geologica Carpathica, 50: 339-349. ##
[27]. Popov S V, Rögl F, Rozanov A Y, Steininger F F, Shcherba I G, Kovac M (2004) Lithological-palaeogeographic maps of paratethys, CFS Courier Forschungsinstitut Senckenberg, 250: 1-46. ##
[28]. Omrani H, Raghimi M (2018) Origin of the mud volcanoes in the south east Caspian Basin, Iran, Marine and Petroleum Geology, 96: 615-626. ##
[29]. Radfar A, Chakdel A R, Nejati A, Soleimani M, FaridTaati (2019) New insights into the structure of the South Caspian Basin from seismic reflection data, Gorgan Plain, Iran, International Journal of Earth Sciences, 108: 379-402. ##
[30]. Robert A M M, Letouzey J, Kavoosi M A, Sherkati S, Müller C, Vergés J, Aghababaei A (2014) Structural evolution of the Kopeh Dagh fold-and-thrust belt (NE Iran) and interactions with the South Caspian Sea Basin and Amu Darya Basin, Marine and Petroleum Geology, 57: 68-87. ##
[31]. شرفی م، موسوی ن، مرادپور م، بیرانوند ب، بایت گل ئ، مهاجر سلطانی ح (1400) سنگ‌شناسی و زیست چینه‌نگاری سازندهای آقچاگیل و آپشرون براساس نانوپلانکتون‌های آهکی در دشت‌گرگان: کاربرد در بازسازی جغرافیای دیرینه حوضه خزر جنوبی، دوفصلنامه رسوب‌شناسی کاربردی، 9: 112-97. ##
[32]. Tagiyev M, Nadirov R, Bagirov E, Lerche I (1997) Geohistory, thermal history and hydrocarbon generation history of the north-west South Caspian Basin, Marine and Petroleum Geology, 14: 363-382. ##
[33]. Kopf A J (2002) Significance of mud volcanism, Reviews of Geophysics, 40: 2-1-2-52. ##
[34]. Jakubov A A, AliZade A A, Zeinalov M M (1971) Mud volcanoes of the Azerbaijan SSR: Atlas. Azerbaijan Academy of Sciences, Baku (in Russian). ##
[35]. Farhadian Babadi M, Mehrabi B, Tassi F, Cabassi J, Pecchioni E, Shakeri A, Vaselli O (2021) Geochemistry of fluids discharged from mud volcanoes, in SE Caspian Sea (Gorgan Plain, Iran), International Geology Review, 63: 437-452. ##
[36]. Paran Y, Donbali N (1963) Geological well completion report Gorgan-3 (Go-3). ##
[37]. Rad F K (1982) Hydrocarbon potential of the eastern Alborz region, NE Iran, Journal of Petroleum Geology, 4: 419-435. ##
[38]. Walker J D, Geissman J W, Bowring S A, Babcock L E (2013) The geological society of America geologic time scale, Geological Society of America Bulletin, 125: 259-272. ##
[39]. Van Hinte J E (1978) Geohistory analysis; application of micropaleontology in exploration geology, American Association of Petroleum Geologists Bulletin, 62: 201-222. ##
[40]. Allen P, Allen R (2013) Basin analysis: principles and application to petroleum play assessment, Wiley-Blackwell; 3rd edition. ##
[41]. Goodwin N R J, Abdullayev N, Javadova A, Volk H, Riley G (2020) Diamondoids and basin modelling reveal one of the worlds›s deepest petroleum systems, South Caspian Basin, Azerbaijan, Journal of Petroleum Geology, 43: 133-149. ##
[42]. Baganz O W, Bagirov E, Michael G E, Shultz A (2012) Productive Series Play of the Paleo-Volga Delta, South Caspian Basin: Exploration History, Sedimentation, and Petroleum System. In: Baganz OWT, Bartov Y, Bohacs KM,Nummedal D, (Eds): Lacustrine sandstone reservoirs and hydrocarbon systems, American Association of Petroleum Geologists, AAPG Memoir 95, 57-70. ##
[43]. Smith Rouch L S (2006) Oligocene–Miocene Maykop/Diatom total petroleum system of the South Caspian Basin Province, Azerbaijan, Iran, and Turkmenistan, US Geological Survey Bulletin, 2201. ##
[44]. Green T, Abdullayev N, Hossack J, Riley G, Roberts A M (2009) Sedimentation and subsidence in the South Caspian Basin, Azerbaijan, Geological Society, London, Special Publications, 312: 241-260. ##
[45]. Reynolds A D, Simmons M D, Bowman M B J, Henton J, Brayshaw A C, Ali-Zade A A, Guliyev I S, Suleymanova S F, Ateava E Z, Mamedova D N, Koshkarly O (1998) Implications of outcrop geology for reservoirs in the Neogene Productive Series: Apsheron Peninsula, Azerbaijan1, AAPG Bulletin, 82: 25-49. ##