[1]. Sunil L, Kumarappa S, Hegde R (2016) Experimental studies on pool boiling heat transfer using alumina and graphene oxied nanofluid, International Research Journal of Engineering and Technology (IRJET) e-ISSN, 03, 01: 2395-0056. ##
[2]. Chung J, Chen T, Maroo S (2011) A review of recent progress on nano/micro scale nucleate boiling fundamentals, Frontiers in Heat and Mass Transfer (FHMT), 2: 2. ##
[3]. Liu W, Yang Z, Zhang B, Lv P (2017) Experimental study on the effects of mechanical vibration on the heat transfer characteristics of tubular laminar flow, International Journal of Heat and Mass Transfer, 115: 169-79. ##
[4]. Léal L, Miscevic M, Lavieille P, Amokrane M, Pigache F, Topin F, Nogarède B, Tadrist L (2013) An overview of heat transfer enhancement methods and new perspectives: Focus on active methods using electroactive materials, International Journal of Heat and Mass Transfer, 61: 505-24. ##
[5]. Improvement of heat transfer by means of ultrasound: Application to a double-tube heat exchanger (2012) Ultrasonics Sonochemistry, 19: 1194-1200. ##
[6]. Azmi W, Sharif M, Yusof T, Mamat R, Redhwan (2017) Potential of nanorefrigerant and nanolubricant on energy saving in refrigeration system–A review. Renewable and Sustainable Energy Reviews, 69: 415-28. ##
[7]. Sheikholeslami M, Gorji-Bandpy M, Ganji D D (2015) Review of heat transfer enhancement methods: Focus on passive methods using swirl flow devices, Renewable and Sustainable Energy Reviews, 49: 444-69. ##
[8]. Leong K, Ho J, Wong K (2017) A critical review of pool and flow boiling heat transfer of dielectric fluids on enhanced surfaces, Applied Thermal Engineering, 112: 999-1019. ##
[9]. Yang L, Du K (2017) A comprehensive review on heat transfer characteristics of TiO2 nanofluids, International Journal of Heat and Mass Transfer, 108: 11-31. ##
[10]. Amani M, Amani P, Kasaeian A, Mahian O, Wongwises S (2017) Thermal conductivity measurement of spinel-type ferrite MnFe2O4 nanofluids in the presence of a uniform magnetic field, Journal of Molecular Liquids, 230: 121-8. ##
[11]. Choi S U, Eastman J A (1995) Enhancing thermal conductivity of fluids with nanoparticles, Argonne National Lab., (ANL), Argonne, IL (United States). ##
[12]. Timofeeva E V, Gavrilov A N, McCloskey J M, Tolmachev Y V, Sprunt S, Lopatina L M, Selinger J V (2007) Thermal conductivity and particle agglomeration in alumina nanofluids: experiment and theory, Physical Review E, 76: 061203. ##
[13]. Hong K, Hong T K, Yang H S (2006) Thermal conductivity of Fe nanofluids depending on the cluster size of nanoparticles, Applied Physics Letters, 88: 031901. ##
[14]. Vafaei S, Borca Tasciuc T (2014) Role of nanoparticles on nanofluid boiling phenomenon: Nanoparticle deposition, Chemical Engineering Research and Design, 92: 842-56. ##
[15]. Das P K, Mallik A K, Ganguly R, Santra A K (2016) Synthesis and characterization of TiO2–water nanofluids with different surfactants, International Communications in Heat and Mass Transfer, 75: 341-8. ##
[16]. Xuan Y, Li Q (2000) Heat transfer enhancement of nanofluids, International Journal of heat and fluid flow, 21: 58-64. ##
[17]. Wamkam C T, Opoku M K, Hong H, Smith P (2011), Effects of pH on heat transfer nanofluids containing ZrO2 and TiO2 nanoparticles, Journal of Applied Physics, 109: 024305. ##
[18]. Goudarzi K, Nejati F, Shojaeizadeh E, Yousef Abad S A (2015) Experimental study on the effect of pH variation of nanofluids on the thermal efficiency of a solar collector with helical tube, Experimental Thermal and Fluid Science, 60: 20-7. ##
[19]. Sarafraz M, Hormozi F (2015) Pool boiling heat transfer to dilute copper oxide aqueous nanofluids, International Journal of Thermal Sciences, 90: 224-37. ##
[20]. Peyghambarzadeh S, Hashemabadi S, Naraki M, Vermahmoudi Y (2013) Experimental study of overall heat transfer coefficient in the application of dilute nanofluids in the car radiator, Applied Thermal Engineering, 52: 8-16. ##
[21]. Habibzadeh S, Kazemi-Beydokhti A, Khodadadi A A, Mortazavi Y, Omanovic S, Shariat Niassar M (2010) Stability and thermal conductivity of nanofluids of tin dioxide synthesized via microwave-induced combustion route, Chemical Engineering Journal, 156: 471-8. ##
[22]. Mahbubul I, Shahrul I, Khaleduzzaman S, Saidur R, Amalina M, Turgut A (2015) Experimental investigation on effect of ultrasonication duration on colloidal dispersion and thermophysical properties of alumina–water nanofluid, International Journal of Heat and Mass Transfer, 88: 73-81. ##
[23]. Ghotbinasab S, Khooshehchin M, Mohammadidoust A, Rafiee M, Salimi F, Fathi S (2021) Comparing the heat transfer coefficient of copper sulfate and isopropanol solutions in the pool boiling process: Bubble dynamic and ultrasonic intensification, Chemical Engineering Science, 116589. ##
[24]. Yang L, Du K, Zhang X S, Cheng B (2011) Preparation and stability of Al2O3 nano-particle suspension of ammonia–water solution. Applied Thermal Engineering, 31: 3643-7. ##
[25]. Kim H, Kim Y, BH kang (2004) Enhancement of natural convection and pool boiling heat transfer via ultrasonic vibraton, Journal of Heat and Mass Transfer, 47:2831-40. ##
[26]. Khooshehchin M, Mohammadidous A, Ghotbinasab S (2020) An optimization study on heat transfer of pool boiling exposed ultrasonic waves and particles addition, International Communications in Heat and Mass Transfer, 114: 104558. ##
[27]. Taurozzi J S, Hackley V A, Wiesner M (2012) Preparation of nanoparticle dispersions from powdered material using ultrasonic disruption, NIST Special Publication, 1200: 1200-2. ##
[28]. Rohsenow W M (1951) A method of correlating heat transfer data for surface boiling of liquids,Cambridge, Mass.: MIT Division of Industrial Cooporation, 5, 3-4. ##
[29]. Kutateladze S S (1995) Heat transfer in condensation and boiling, AEC-tr-3770. ##
[30]. Stephan K, Abdelsalam M (1980) Heat-transfer correlations for natural convection boiling, International Journal of Heat and Mass Transfer, 23: 73-87. ##
[31]. Gorenflo D (1993) Pool Boiling, VDI Heat Atlas, VDI-Verlag, Dusseldorf, Germany. ##
[32]. Fazel S A, Roumana S (2010) Pool boiling heat transfer to pure liquids, In: WSEAS Conference, USA. ##
[33]. Fazel S A A (2017) A genetic algorithm-based optimization model for pool boiling heat transfer on horizontal rod heaters at isolated bubble regime, Heat and Mass Transfer, 53: 2731-2744. ##
[34]. Lu L, Liu Z H, Xiao H S (2011) Thermal performance of an open thermosyphon using nanofluids for high-temperature evacuated tubular solar collectors: Part 1: Indoor experiment, Solar Energy, 85, 2: 379-387. ##
[35]. Wong K V, Castillo M J (2010) Heat transfer mechanisms and clustering in nanofluids, Advances in Mechanical Engineering, 2: 795478. ##
[36]. Xu G, Fu J, Dong B, Quan Y, Gu G (2019) A novel method to measure thermal conductivity of nanofluids, International Journal of Heat and Mass Transfer, 130: 978-988. ##
[37]. Asadi A, Asadi M, Rezaniakolaei A, Aistrup L, Rosendahl L A, frand M, Wongwises S (2018) Heat transfer efficiency of Al2O3-MWCNT/thermal oil hybrid nanofluid as a cooling fluid in thermal and energy management applications: An experimental and theoretical investigation, International Journal of Heat and Mass Transfer, 117: 474-486. ##
[38]. Esfahani N N, Toghraie D, Afrand M (2018) A new correlation for predicting the thermal conductivity of ZnO–Ag (50%–50%)/water hybrid nanofluid: an experimental study, Powder Technology, 323: 367-373.
[39]. Hamid K A, Azmi W H, Nabil M F, Mamat R (2018) Experimental investigation of nanoparticle mixture ratios on TiO2–SiO2 nanofluids heat transfer performance under turbulent flow, International Journal of Heat and Mass Transfer, 118: 617-627. ##
[40]. Yu W, Xie H, Chen L, Li Y (2010) Investigation on the thermal transport properties of ethylene glycol-based nanofluids containing copper nanoparticles, Powder Technology, 197, 3: 218-221. ##
[41]. Kwark S M, Kumar R, Moreno G, Yoo J, You S M (2010) Pool boiling characteristics of low concentration nanofluids, International Journal of Heat and Mass Transfer, 53, 5-6: 972-981. ##
[42]. Wong K V, Castillo M J (2010) Heat transfer mechanisms and clustering in nanofluids, Advances in Mechanical Engineering, 2: 1-9. ##
[43]. Wang X j, Zhu D S (2009) Investigation of pH and SDBS on enhancement of thermal conductivity in nanofluids, Chemical Physics Letters, 470, 1-3: 107-111. ##
[44]. Patra N, Ghosh P, Singh R S, Nayak A (2019) Flow visualization in dilute oxide based nanofluid boiling, International Journal of Heat and Mass Transfer, 135: 331-344. ##
[45]. Kim S J, Bang I C, Buongiorno J, Hu W (2007) Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux, International Journal of Heat and Mass Transfer, 50, 19-20: 4105-4116. ##
[46]. Suriyawong A, Wongwises S (2010) Nucleate pool boiling heat transfer characteristics of TiO2–water nanofluids at very low concentrations, Experimental Thermal and Fluid Science, 34, 8: 992-999. ##
[47]. Cieslinski J T, Kaczmarczyk T Z (2011) Pool boiling of water-Al2O3 and water-Cu nanofluids on horizontal smooth tubes, Nanoscale Research Letters, 6, 1: 220. ##
[48] Umesh V, Raja B (2015) A study on nucleate boiling heat transfer characteristics of pentane and CuO-pentane nanofluid on smooth and milled surfaces, Experimental Thermal and Fluid Science, 64: 23-29. ##
[49]. Shahmoradi Z, Etesami N, Esfahany M N, (2013) Pool boiling characteristics of nanofluid on flat plate based on heater surface analysis, International Communications in Heat and Mass Transfer, 47: 113-120. ##
[50]. Shi M, Shuai M, Xuan Y (2006) Experimental study of pool boiling heat transfer for nano-particle suspensions on a plate surface, in International Heat Transfer Conference 13. Begel House Library, 7. ##
[51]. Chopkar M, Das S K, Manna I, Das P K (2008) Pool boiling heat transfer characteristics of ZrO2–water nanofluids from a flat surface in a pool, Heat and Mass Transfer, 44, 8: 999-1004. ##
[52]. Narayan G P, Kanjirakat A, Sateesh G, Das S.K (2008) Effect of surface orientation on pool boiling heat transfer of nanoparticle suspensions, International Journal of Multiphase Flow, 34, 2: 145-160. ##
[53]. Pioro I, Rohsenow W, Doerffer S (2004) Nucleate pool-boiling heat transfer. I: review of parametric effects of boiling surface, International Journal of Heat and Mass Transfer, 47: 5033-44. ##
[54]. Gerardi C, Buongiorno J, Hu L w, McKrell T (2010) Study of bubble growth in water pool boiling through synchronized, infrared thermometry and high-speed video, International Journal of Heat and Mass Transfer, 53: 4185-92. ##
[55]. Cao Z, Wu Z, Pham A D, Yang Y, Abbood S, Falkman P, Ruzgas T, Albèr C, Sundén B (2019) Pool boiling of HFE-7200 on nanoparticle-coating surfaces: Experiments and heat transfer analysis, International Journal of Heat and Mass Transfer, 133: 548-60. ##
[56]. Rostamzadeh A, Jafarpur K, Rad E G (2016) Numerical investigation of pool nucleate boiling in nanofluid with lattice Boltzmann method, Journal of Theoretical and Applied Mechanics, 54. ##
[57]. Li B, Han X, Wan Z, Wang X, Tang Y (2016) Influence of ultrasound on heat transfer of copper tubes with different surface characteristics in sub-cooled boiling, Applied Thermal Engineering, 92: 93-103. ##
[58]. Douglas Z, Boziuk T R, Smith M K, Glezer A (2012) Acoustically enhanced boiling heat transfer, Physics of Fluids, 24: 052105. ##
[59]. Iida Y, Tsutsui K (1992) Effects of ultrasonic waves on natural convection, nucleate boiling, and film boiling heat transfer from a wire to a saturated liquid, Experimental Thermal and Fluid Science, 5: 108-15. ##