مدل‌سازی شبکه‌حفره‌ای نفوذ مولکولی توأم با ریزش ثقلی در یک مدل تک‌بلوکی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی نفت، پردیس بین‌المللی کیش، دانشگاه تهران، ایران

2 انستیتو مهندسی نفت، دانشکده مهندسی شیمی، پردیس دانشکده‌های فنی، دانشگاه تهران، ایران

3 گروه مهندسی نفت، پردیس بین‌المللی کیش، دانشگاه تهران، ایران/ انستیتو مهندسی نفت، دانشکده مهندسی شیمی، پردیس دانشکده‌های فنی، دانشگاه تهران، ایران

چکیده

بخش قابل توجهی از منابع هیدروکربوری ایران در مخازن شکاف‌دار واقع شده‌اند. وجود دو سیستم مختلف شکاف و ماتریس، باعث به‌وجود آمدن دو مدل برای ذخیره و عبور سیال ‌می‌شود. ارزیابی واکنش بین سنگ و سیال و شناسایی میکرو فرآیند‌ها در مقیاس حفره، در شناخت بهتر فرآیند‌های تولید در این مخازن مؤثر است. مدل‌سازی شبکه ‌حفره‌ای، امکان شبیه‌سازی محدوده وسیعی از شرایط مختلف، رژیم های جریانی متفاوت و شناسایی میکرو فرآیند ها در مقیاس حفره را فراهم ‌می‌کند. از آنجا که در تزریق گاز غیرتعادلی در مخازن شکاف‌دار، تلفیقی از ریزش ثقلی و نفوذ مولکولی به فرآیند تولید کمک می‌کنند و تاکنون مطالعه‌ای در مقیاس حفره، که در برگیرنده اثر توأمان هر دو فرآیند باشد، انجام نشده است، این مطالعه به بررسی این موضوع پرداخته است. در این تحقیق با توسعه یک مدل شبکه‌ حفره‌ای که بر مبنای قیاس بین فرآیند خشک‌شدن هم دمای محیط متخلخل و فرآیند نفوذ مولکولی ساخته شده بود، با اضافه کردن اثر نیروی ثقل در یک مدل تک بلوکی و با حساسیت سنجی برروی پارامترهای مختلف محیط متخلخل و سیالات موجود در فرآیند نظیر نوع سیالات، فشارهای مختلف و ابعاد گلوگاه‌ها، فرآیند‌های ریزش ثقلی و نفوذ مولکولی مورد ارزیابی قرار گرفتند. براساس نتایج به‌دست آمده، در فشار kPa 3/101، زمان تخلیه فاز مایع در سیستم های هپتان-نیتروژن و هپتان-دی اکسید کربن به‌ترتیب حدود 18 و 170% از سیستم هپتان-متان بیشتر است. این روند در فشار بالا نیز صادق است. با تغییر فاز مایع از هپتان به اکتان و دکان، زمان تخلیه فاز مایع به‌ترتیب 6/3 و 19 برابر دیرتر اتفاق می‌افتد. همچنین، نتایج نشان داد که اثر افزایش طول گلوگاه به اندازه افزایش شعاع گلوگاه، زمان تخلیه فاز مایع را طولانی‌تر نمی‌کند.
 
 

کلیدواژه‌ها


عنوان مقاله [English]

Pore-Network Modeling of Combined Molecular Diffusion and Gravity Drainage Mechanisms in a single Matrix Block

نویسندگان [English]

  • ahmad mohammadi 1
  • Mohammad Reza Rasaei 2
  • Vahid Mashayekhizadeh 2
  • Ali Nakhaei 3
1 Department of Petroleum Engineering, Kish International Campus, University of Tehran, Iran
2 Institute of Petroleum Engineering, School of Chemical Engineering, Faculties of Engineering Compus, University of Tehran, Tehran, Iran
3 Department of Petroleum Engineering, Kish International Campus, University of Tehran, Iran\Institute of Petroleum Engineering, School of Chemical Engineering, Faculties of Engineering Compus, University of Tehran, Tehran, Ira
چکیده [English]

A significant part of Iranian hydrocarbon resources are located in fractured reservoirs. The existence of two different fracture and matrix systems creates two models for fluid storage and flow. Evaluation of the rock and fluid interaction and identification of micro-mechanisms at the pore scale is effective in better understanding the production mechanisms in these reservoirs. Pore network modeling makes it possible to simulate a wide range of different conditions, different flow regimes, and identifying micro-mechanisms at the pore scale. Since the injection of non-equilibrium gas into fractured reservoirs, a combination of gravity and molecular diffusion contribute to the production process, and so far, no pore-scale study involving the combined effects of both mechanisms has been performed, this study has examined this issue. In this research, by developing an exist pore network model based on the analogy between the isothermal drying process of a porous medium and the molecular diffusion process, by adding the effect of gravity in a single-block model and by sensitizing the various parameters of the porous medium and fluids in the process such as: fluid type, different pressures, pores and throats size, the gravity drainage and molecular diffusion mechanisms were evaluated. According to the results, at a pressure of 101.3 kPa, the desaturation time of the liquid phase of the Heptane-Nitrogen and Heptane-Carbon dioxide systems is about 18 and 170% longer than the Heptane-Methane system, respectively. This trend is also true at high pressures. By changing the liquid phase from Heptane to Octane and Decane, the desaturation time of the liquid phase occurs 3.6 and 19 times later, respectively. The results also showed that the effect of increasing the throat length does not prolong the depletion time of the liquid phase as much as increasing the throat radius.
 

کلیدواژه‌ها [English]

  • Fractured Reservoirs
  • Molecular Diffusion Mechanisms
  • Gravity Drainage Mechanisms
  • Pore-Network Modeling
  • Drying Process
[1]. Yiotis A, Stubos A, Boudouvis A, Tsimpanogiannis N, Yortsos Y (2005) Pore-network modeling of isothermal drying in porous media, Upscaling Multiphase Flow in Porous Media, 63-86 Springer. ##
[2]. Sahimi M (2010) Flow and transport in porous media and fractured rock, Wiley-VCH Verlag GmbH, Second, Revised and Enlarged Edition, Chapter1, 5-7. ##
[3]. Nowicki S, Davis H, Scriven L (1992) Microscopic determination of transport paraheters in drying porous media, Drying Technology, 10: 925-946. ##
[4]. Prat M (1993) Percolation model of drying under isothermal conditions in porous media, International Journal of Multiphase Flow, 19: 691-704. ##
[5]. Laurindo J B, Prat M (1996) Numerical and experimental network study of evaporation in capillary porous media: Phase distributions, Chemical Engineering Science, 51, 23: 5171–5185. ##
[6]. Le Bray Y, Prat M (1999) Three-dimensional pore network simulation of drying in capillary porous media, International Journal of Heat and Mass Transfer, 42: 4207-4224. ##
[7]. Freitas D, Prat M (2000) Pore network simulation of evaporation of a binary liquid from a capillary porous medium, Transport in Porous Media, 40: 1-25. ##
[8]. Yiotis A G, Stubos A, Boudouvis A, Yortsos Y C (2001) A 2-D pore-network model of the drying of single-component liquids in porous media, Advances in Water Resources, 24: 439-460. ##
[9]. Yiotis A G, Tsimpanogiannis I N, Stubos A K, Yortsos Y C (2006) Pore-network study of the characteristic periods in the drying of porous materials, Journal of Colloid and Interface Science, 297: 738-748. ##
[10]. Prat M (2007) On the influence of pore shape, contact angle and film flows on drying of capillary porous media, International Journal of Heat and Mass Transfer, 50: 1455-1468. ##
[11]. Metzger T, Tsotsas E (2008) Viscous stabilization of drying front: Three-dimensional pore network simulations, Chemical Engineering Research and Design, 86: 739-744. ##
[12]. Chraibi H, Prat M, Chapuis O (2009) Influence of contact angle on slow evaporation in two-dimensional porous media, Physical Review E, 79, 2: 026313. ##
[13]. Wu R, Cui G M, Chen R (2014) Pore network study of slow evaporation in hydrophobic porous media, International Journal of Heat and Mass Transfer, 68: 310-323. ##
[14]. Vorhauer N, Wang Y, Kharaghani A, Tsotsas E, Prat M (2015) Drying with formation of capillary rings in a model porous medium, Transport in Porous Media, 110: 197-223. ##
[15]. Wu R, Kharaghani A, Tsotsas E (2016) Capillary valve effect during slow drying of porous media, International Journal of Heat and Mass Transfer, 94: 81-86. ##
[16]. Thiery J, Rodts S, Weitz D, Coussot P (2017) Drying regimes in homogeneous porous media from macro-to nanoscale, Physical Review Fluids, 2: 074201. ##
[17]. Wu R, Zhao C, Tsotsas E, Kharaghani A (2017) Convective drying in thin hydrophobic porous media, International Journal of Heat and Mass Transfer, 112: 630-642. ##
[18]. Attari Moghaddam A, Kharaghani A, Tsotsas E, Prat M (2018) A pore network study of evaporation from the surface of a drying non-hygroscopic porous medium, AIChE Journal, 64: 1435-1447. ##
[19]. Mashayekhizadeh V, Rasaei M R (2018) Pore network modelling of molecular diffusion in a single-block model during lean gas injection, investigating the effect of throat sorting, The Canadian Journal of Chemical Engineering, 96: 605-619. ##
[20]. Mashayekhizadeh V, Rasaei M R (2019) Pore network modelling of molecular diffusion in a single-block model during lean gas injection, a comparative study on calculation approaches, The Canadian Journal of Chemical Engineering, 97: 808-820. ##
[21]. Chen Y, Yan K, Zhang J, Leng R, Cheng H, Zhang X, Liu H, Lyu W (2020) A novel pore-fracture dual network modeling method considering dynamic cracking and its applications, Petroleum Research, 5: 164-169. ##
[22]. Zhao J, Qin F, Kang Q, Derome D, Carmeliet J (2021) Pore-scale simulation of drying in porous media using a hybrid lattice Boltzmann: pore network model, Drying Technology, 1-16. ##
[23]. Maalal O, Prat M, Lasseux D (2021) Pore network model of drying with Kelvin effect, Physics of Fluids, 33: 027103. ##
[24]. Antoine C (1888) Pressure calculation of various vapours. (Calcul des tensions de diverses vapeurs), Comptes rendus hebdomadaires des séances de l’Académie des Sciences, 107: 778-780. ##
[25]. Da Silva F V, Belery P (1989) Molecular diffusion in naturally fractured reservoirs: a decisive recovery mechanism, SPE Annual Technical Conference and Exhibition, SPE-19672-MS. ##
[26]. Lee S T, Chien M C H (1984) A New Multicomponent Surface Tension Correlation Based on Scaling Theory, SPE Enhanced Oil Recovery Symposium, SPE-12643-MS. ##