تأثیر زئولیت طبیعی کلینوپتیلولیت بر خواص و عملکرد فتوکاتالیستی نیمه‌رسانای BiOI در تخریب نوری پساب رنگی

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی شیمی، دانشکده مهندسی، دانشگاه کردستان، سنندج، ایران

چکیده

در پژوهش حاضر، فرآیند تخریب نوری آلاینده رنگی متیل اورانژ با استفاده از فتوکاتالیست‌های نانوساختار BiOI/Clinoptilolite با هدف بررسی اثرات حضور پایه زئولیت طبیعی کلینوپتیلولیت و مقدار بارگذاری نانوذرات BiOI برروی فعالیت فتوکاتالیستی مورد مطالعه قرار گرفت. به این منظور مقادیر مختلف فتوکاتالیست‌های BiOI تثبیت شده برروی کلینوپتیلولیت (wt.% 40، 30، 20، 10) به‌روش سونوشیمیایی-رسوبی سنتز شدند. در بررسی خصوصیات نانوکامپوزیت‌های سنتز شده از آنالیزهایی همچون XRDا، FESEM/EDXا،PL و UV-vis استفاده شد. نتایج آنالیزهای شناسایی بیانگر صحت سنتز نمونه‌های سنتزی بوده و نشان می‌دهد که حضور کلینوپتیلولیت نه تنها مورفولوژی و ساختار BiOI را تغییر نمی‌دهد بلکه منجر به کاهش بازترکیب جفت‌های الکترون-حفره و همگنی مورفولوژی می‌شود. همچنین با توجه به عدم مشاهده ذرات تیغه‌ای شکل کلینوپتیلولیت در تصاویر FESEM نمونه حاوی 30% وزنی BiOI، به نظر می‌رسد که نانوصفحات گل‌مانند BiOI تقریباً سطح ذرات کلینوپتیلولیت را پوشانده‌اند. بدیهی است که با افزایش بیشتر مقدار بارگذاری، سطح زئولیت به شدت پوشانده شده، تجمع ذرات فلزی افزایش یافته و در نتیجه تماس بین ذرات BiOI و کلینوپتیلولیت و همچنین راندمان جداسازی جفت‌های الکترون-حفره تضعیف شده که منجر به کاهش عملکرد فتوکاتالیستی می‌شود. با بررسی نحوه اثرگذاری پارامترهای عملیاتی، حداکثر مقدار حذف فتوکاتالیستی متیل اورانژ (100%) در شرایط بهینه زمان واکنش h 2، غلظت آلاینده ppm 5 و مقدار کاتالیست g/L 5/0 تحت تابش نور فرابنفش به‌دست آمد. همچنین، با بررسی مدل‌های مختلف سینتیکی برای کاتالیست منتخب، مطابقت مدل‌های سینتیکی درجه دوم، فرندلیچ اصلاح شده و انتشار سهموی با فرآیند حذف متیل اورانژ با 99/0 < R2 تایید شد. به‌علاوه همان‌طور که از نتایج آنالیز UV-vis نیز قابل انتظار بود، فتوکاتالیست بهینه B(30)/CLT کارایی مطلوبی را نیز تحت تابش نور مرئی برای تخریب آلاینده رنگی (82%) از خود نشان داد.
 

کلیدواژه‌ها


عنوان مقاله [English]

The Impact of Clinoptilolite Natural Zeolite on the Photocatalytic Properties and Performance of BiOI Semiconductor in the Photodegradation of Dye Wastewater

نویسندگان [English]

  • Avin Zandi
  • Rojiar Akbari Seneh
  • Farhad Rahmani Chiyaneh
Department of Chemical Engineering, Faculty of Engineering, University of Kurdistan, Sanandaj, Iran
چکیده [English]

In the present study, the process of optical degradation of methyl orange dye pollutant was studied using BiOI / Clinoptilolite nanostructured photocatalysts to investigate the effects of clinoptilolite natural zeolite support and BiOI nanoparticle loading on photocatalytic activity. For this purpose, different amounts of BiOI photocatalysts on clinoptilolite (10, 20, 30 and 40 wt.%) were synthesized via sonochemical-precipitation method. The synthesized photocatalysts were characterized by XRD, FESEM, EDX, PL and UV-vis techniques. The results of identification analyzes indicate the accuracy of the synthesis of synthetic samples. By examining the effect of operating parameters, the maximum amount of methyl orange photocatalytic removal (100%) was obtained under optimal reaction time of 2 hours, 5 ppm pollutant concentration and 0.5 g/L amount of photocatalyst under ultraviolet light. Also, by examining different kinetic models for the selected catalyst, the conformity of the second-order, modified Freundlich, parabolic diffusion models with the methyl orange removal process with R2 >0.99 was confirmed. In addition, as expected from the results of UV-vis analysis, the optimal B (30)/CLT photocatalyst showed desirable performance under visible light radiation for the degradation of dye (82%).
 

کلیدواژه‌ها [English]

  • Clinoptilolite
  • BiOI Semiconductor
  • Photodegradation
  • Methyl Orange
  • Kinetics
[1]. Podasca V E, Damaceanu M D (2021) ZnO-Ag based polymer composites as photocatalysts for highly efficient visible-light degradation of Methyl Orange, Journal of Photochemistry and Photobiology A: Chemistry, 406: 113003. ##
[2]. Sudharani A, Kumar K S, Mangiri R, Ratnakaram Y, Vijayalakshmi R (2021) Morphology driven enhanced photocatalytic activity of CuO/BiOI nanocomposites, Materials Chemistry and Physics, 258: 123891. ##
[3]. Sabir A, Sherazi T A, Xu Q (2021) Porous polymer supported Ag-TiO2 as green photocatalyst for degradation of methyl orange, Surfaces and Interfaces, 26: 101318. ##
[4]. Janani F, Khiar H, Taoufik N, Elhalil A, Sadiq M, Puga A, Barka N (2021) ZnO–Al2O3–CeO2–Ce2O3 mixed metal oxides as a promising photocatalyst for methyl orange photocatalytic degradation, Materials Today Chemistry, 21: 100495. ##
[5]. Acedo-Mendoza A, Infantes-Molina A, Vargas-Hernández D, Chávez-Sánchez C, Rodríguez-Castellón E, Tánori-Córdova J (2020) Photodegradation of methylene blue and methyl orange with CuO supported on ZnO photocatalysts: The effect of copper loading and reaction temperature, Materials Science in Semiconductor Processing, 119: 105257. ##
[6]. Li S, Zhang M, Qu Z, Cui X, Liu Z, Piao C, Song Y (2020) Fabrication of highly active Z-scheme Ag/g-C3N4-Ag-Ag3PO4 (1 1 0) photocatalyst photocatalyst for visible light photocatalytic degradation of levofloxacin with simultaneous hydrogen production, Chemical Engineering Journal, 382: 122394. ##        
[7]. Jo W K, Moru S, Tonda S (2020) Magnetically responsive SnFe2O4/g-C3N4 hybrid photocatalysts with remarkable visible-light-induced performance for degradation of environmentally hazardous substances and sustainable hydrogen production, Applied Surface Science, 506: 144939. ##
[8]. Wang K, Qian Z, Guo W (2019) Multi-heterojunction of SnO2/Bi2O3/BiOI nanofibers: Facile fabrication with enhanced visible-light photocatalytic performance, Materials Research Bulletin, 111: 202-211. ##
[9]. Wang X, Zhu J, Yu X, Fu X, Zhu Y, Zhang Y (2021) Enhanced removal of organic pollutant by separable and recyclable rGH-PANI/BiOI photocatalyst via the synergism of adsorption and photocatalytic degradation under visible light, Journal of Materials Science and Technology, 77: 19-27. ##        
[10]. Pourshirband N, Nezamzadeh-Ejhieh A, Mirsattari S N (2021) The CdS/g-C3N4 nano-photocatalyst: brief characterization and kinetic study of photodegradation and mineralization of methyl orange, Spectrochimica Acta Part A: Molecular and Bimolecular Spectroscopy, 248: 119110. ##
[11]. Parvulescu V, Ciobanu M, Petcu G (2020) Immobilization of semiconductor photocatalysts, In Handbook of smart photocatalytic materials, Elsevier, 103-140. ##
[12]. Rahmani F, Haghighi M, Mohammadkhani B (2017) Enhanced dispersion of Cr nanoparticles over nanostructured ZrO2-doped ZSM-5 used in CO2-oxydehydrogenation of ethane, Microporous and Mesoporous Materials, 242:34-49. ##
[13]. Rahmani F, Haghighi M, Vafaeian Y, Estifaee P (2014) Hydrogen production via CO2 reforming of methane over ZrO2-Doped Ni/ZSM-5 nanostructured catalyst prepared by ultrasound assisted sequential impregnation method, Journal of Power Sources, 272:816-27. ##
[14]. Sene R A, Moradi G, Sharifnia S (2017) Sono-dispersion of TiO2 nanoparticles over clinoptilolite used in photocatalytic hydrogen production: Effect of ultrasound irradiation during conventional synthesis methods, Ultrasonic Sonochemistry, 37: 490-501. ##
[15]. Wang Y, Sun J, Munir T, Jia B, Gul A (2021) Various morphologies of clinoptilolites synthesized in alcohol-solvent hydrothermal system and their selective adsorption of CH4 and N2, Microporous and Mesoporous Materials, 111235. ##
[16]. Heidari Z, Alizadeh R, Ebadi A, Oturan N, Oturan M A (2020) Efficient photocatalytic degradation of furosemide by a novel sonoprecipited ZnO over ion exchanged clinoptilolite nanorods, Separation and Purification Technology, 242: 116800. ##
[17]. Rahmani F, Haghighi M, Amini M (2015) The beneficial utilization of natural zeolite in preparation of Cr/clinoptilolite nanocatalyst used in CO2-oxidative dehydrogenation of ethane to ethylene, Journal of Industrial and Engineering Chemistry, 31:142-55. ##
[18]. Rahmani F, Haghighi M, Mahboob S (2016) CO2-enhanced dehydrogenation of ethane over sonochemically synthesized Cr/clinoptilolite-ZrO2 nanocatalyst: Effects of ultrasound irradiation and ZrO2 loading on catalytic activity and stability, Ultrasonic Sonochemistry, 33:150-63. ##
[19]. Guan Y, Wu J, Liu Q, Gu M, Lin Y, Qi Y, Li Q (2019) Fabrication of BiOI/MoS2 heterojunction photocatalyst with different treatment methods for enhancing photocatalytic performance under visible-light, Materials Research Bulletin, 120: 110579. ##
[20]. اکبری سنه ر، رحمانی ف، مرادی غ، شریف‌نیا ش (2020) تثبیت نانوذرات TiO2 برروی آلومیناسیلیکات طبیعی فرآوری شده جهت تولید هیدروژن: ارزیابی اثر فرآوری شیمیایی پایه و شرایط عملیاتی فرآیند، پژوهش نفت، 30، 2-99، 30-14. ##
[21]. اکبر سنه ر، شریف‌نیا ش، مرادی غ (2017) افزایش تولید فتوکاتالیستی هیدروژن از طریق به‌کارگیری تابش اولتراسوند در طول فرآیند سنتز فتوکاتالیست تیتانیا روی پایه کلینوپتیلولیت، پژوهش نفت، 27، 2-96، 52-39. ##
[22]. Mengting Z, Kurniawan T A, Yanping Y, Othman M H D, Avtar R, Fu D, Hwang G H (2020) Fabrication, characterization, and application of ternary magnetic recyclable Bi2WO6/BiOI@ Fe3O4 composite for photodegradation of tetracycline in aqueous solutions, Journal of Environmental Management, 270: 110839. ##
[23]. Huang X, Guo Q, Yan B, Liu H, Chen K, Wei S, Wang L (2021) Study on photocatalytic degradation of phenol by BiOI/Bi2WO6 layered heterojunction synthesized by hydrothermal method, Journal of Molecular Liquids, 322: 114965. ##
[24]. Pourshirband N, Nezamzadeh-Ejhieh A, Mirsattari S N (2020) The coupled AgI/BiOI catalyst: synthesis, brief characterization, and study of the kinetic of the EBT photodegradation, Chemical Physics Letters, 761: 138090. ##
[25]. Xiao Y, Ji Z, Zou C, Xu Y, Wang R, Wu J, Jia T (2021) Construction of CeO2/BiOI S-scheme heterojunction for photocatalytic removal of elemental mercury, Applied Surface Science, 556: 149767. ##
[26]. Sene R A, Sharifnia S, Moradi G (2018) On the impact evaluation of various chemical treatments of support on the photocatalytic properties and hydrogen evolution of sonochemically synthesized TiO2/Clinoptilolite, International Journal of Hydrogen Energy, 43(2): 695-707. ##
[27]. Wang Y, Jiang S, Liu F, Zhao C, Zhao D, Li X (2019) Study on preparation and toluene removal of BiOI/Bi2WO6/ACF photocatalyst, Applied Surface Science, 488: 161-169. ##
[28]. Hasanpour M, Motahari S, Jing D, Hatami M (2021) Investigation of operation parameters on the removal efficiency of methyl orange pollutant by cellulose/zinc oxide hybrid aerogel, Chemosphere, 284: 131320. ##
[29]. Malefane M, Feleni U, Mafa P, Kuvarega A (2020) Fabrication of direct Z-scheme Co3O4/BiOI for ibuprofen and trimethoprim degradation under visible light irradiation, Applied Surface Science, 514: 145940. ##
[30]. Mengting Z, Kurniawan T A, Yanping Y, Avtar R, Othman M H D (2020) 2D Graphene oxide (GO) doped p-n type BiOI/Bi2WO6 as a novel composite for photodegradation of bisphenol A (BPA) in aqueous solutions under UV-vis irradiation, Materials Science and Engineering: C, 108: 110420. ##
[31]. Chu Y, Miao B, Zheng X, Su H (2021) Fabrication of flower-globular Bi2WO6/BiOI@ Ag3PO4 photocatalyst for the degradation of bisphenol A and cefepime under sunlight: Photoelectric properties, degradation performance, mechanism and biodegradability enhancement, Separation and Purification Technology, 272: 118866. ##
[32] Bahrudin N, Nawi M, Zainal Z (2020) Insight into the synergistic photocatalytic-adsorptive removal of methyl orange dye using TiO2/chitosan based photocatalyst, International Journal of Biological Macromolecules, 165: 2462-2474. ##
[33]. Xiao X, Lin Y, Pan B, Fan W, Huang Y (2018) Photocatalytic degradation of methyl orange by BiOI/Bi4O5I2 microspheres under visible light irradiation, Inorganic Chemistry Communications, 93:65-68. ##
[34]. Hu C, Huang H-X, Lin Y-F, Yoshida M, Chen T-H (2019) Decoration of SrTiO3 nanofibers by BiOI for photocatalytic methyl orange degradation under visible light irradiation, Journal of the Taiwan Institute of Chemical Engineers, 96:264-272. ##
[35]. Cai L, Yao J, Li J, Zhang Y, Wei Y (2019) Sonochemical synthesis of BiOI-TiO2 heterojunction with enhanced visible-light-driven photocatalytic activity, Journal of Alloys and Compounds, 783:300-309. ##
[36]. Wu R, Song H, Luo N, Sheng Y, Ji G (2019) Microwave-assisted preparation and enhanced photocatalytic activity of Bi2WO6/BiOI heterojunction for organic pollutants degradation under visible-light irradiation, Solid State Sciences, 87:101-109. ##
[37]. Jin Y-h, Li C-m, Zhang Y-f (2020) Preparation and visible-light driven photocatalytic activity of the rGO/TiO2/BiOI heterostructures for methyl orange degradation, New Carbon Materials, 35(4):394-400. ##