تحلیل و توزیع واحدهای جریان هیدرولیکی و رخساره الکتریکی در چارچوب سکانس‌های رسوبی سازند شوریجه در یکی از میادین گازی شمال شرق ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده زمین‌شناسی، پردیس علوم، دانشگاه تهران، ایران

2 گروه علوم‌ زمین، دانشکده علوم طبیعی، دانشگاه تبریز، ایران

3 مدیریت طرح‌های اکتشافی، شرکت نفت فلات قاره ایران، ایران

چکیده

سازند شوریجه با سن کرتاسه پیشین (نئوکومین-بارمین)، یکی از مهم‌ترین سنگ مخزن‌های آواری در شمال شرق ایران است. با تلفیق اطلاعات مغزه حفاری، بررسی پتروگرافی و به کارگیری لاگ‌های پتروفیزیکی و داده‌های حاصل از آنالیز مغزه (تخلخل و تراوایی) واحد جریان هیدرولیکی و رخساره الکتریکی در توالی رسوبی سازند شوریجه در پنج چاه میدان مشخص گردید. هدف این مطالعه، بررسی ارتباط بین واحد جریان هیدرولیکی و رخساره الکتریکی با جایگاه سکانس (سکانس‌ها و سیستم تراکت‌ها) و زون‌بندی توالی‌های رسوبی سازند شوریجه در مخزن مورد مطالعه است. براساس داده تخلخل و تراوایی حاصل از آنالیز مغزه حفاری، تعداد چهار واحد جریان با استفاده از روش شاخص زون جریان تعیین گردید. تعداد چهار رخساره الکتریکی بر مبنای لاگ‌های گاما، نوترون، چگالی، صوتی و تخلخل مؤثر حاصل از ارزیابی‌های احتمالی با استفاده از روش خوشه‌سازی MRGC تعیین گردید. در نهایت، واحدهای جریان هیدرولیکی و رخساره الکتریکی تعیین شده در چارچوب سکانس‌های رسوبی مورد استفاده قرار گرفته و توزیع آن‌ها در درون مخزن و میدان مشخص گردید که انطباق مشخص بین زون‌های مخزنی و چارچوب چینه‌نگاری سکانسی فراهم شود. در نهایت، پتروفاسیس‌های (میکروکنگلومرا، ماسه‌سنگ و اٌاٌیید گرینستون دولومیتی/ماسه‌ای/مختلط) مربوط به محیط‌های پرانرژی رودخانه بریده بریده و بخش پر انرژی لاگون تا سدهای جزرومدی یا شول، بهترین واحدهای مخزنی این توالی‌ها را در سکانس رسوبی زون D و B و بخش میانی زون ا(C2)اC تشکیل داده‌اند. از سوی دیگر، پتروفاسیس‌های (رس سنگ/ شیل، دولومادستون ماسه‌ای) مربوط به محیط‌های کم انرژی رودخانه بریده بریده (دشت سیلابی)، رودخانه مئاندری و پری تایدال (بالای جزرومد)، ضعیف ترین واحد مخزنی این توالی‌ها را در سکانس رسوبی زون A و E و به‌صورت متناوب در زون‌های اC و D را تشکیل داده‌اند. با تلفیق نتایج حاصل از تعیین واحدهای جریان هیدرولیکی و رخساره‌های الکتریکی در چارچوب سکانس‌ها و سیستم تراکت‌ها، ارتباط بین آنها و جایگاه سکانس‌ها و زون‌بندی مشخص شد.
 

کلیدواژه‌ها


عنوان مقاله [English]

Analysis and Distribution of Hydraulic Flow Unit and Electrofacies in the Framework of Sedimentary Sequences in One of the Gas Fields in Northeastern Iran

نویسندگان [English]

  • Milad Moradi 1
  • Hossain Rahimpour-Bonab 1
  • Ali Kadkhodaie 2
  • Ali Chehrazi 3
1 School of Geology, College of Science, University of Tehran, Iran
2 Department of Earth Sciences, School Natural Sciences, University of Tabriz, Iran
3 Head of Exploration Project Management, Iranian Offshore Oil Company (IOOC)
چکیده [English]

Shurijeh Formation with Early Cretaceous (Neocumin-Barmin) age is one of the most important clastic reservoir rocks in northeastern Iran. By combining core information, petrographic study and application of petrophysical logs and data obtained from core analysis (porosity and permeability) of hydraulic flow unit and Electrofacies in the sedimentary sequence of Shurijeh Formation in five wells field were identified. The purpose of this study is to survey relationship between hydraulic flow unit and Electrofacies with the position of sequences (sequences and system tracts) and zonation of sedimentary sequences of Shurijeh Formation in the study reservoir. Based on the porosity and permeability data obtained from the core analysis, four hydraulic flow units were determined using the Flow zone indicator method. The fourth Electrofacies was determined based on gamma, neutron, density, sound and effective porosity logs obtained from possible evaluations using MRGC clustering method. Afterwards, the Hydraulic flow units and Electrofacies determined in the framework of sedimentary sequences were used and their distribution in the reservoir and field was determined to provide a clear match between the reservoir zones and the sequence stratigraphic framework. Finally, petrophysics (micro conglomerates, sandstones, and Sandy Dolomitic Ooid Grainstone / Hybrid) are associated with high-energy braided river environments and the high-energy section of the lagoon to Barrier Tidal or shoal, the best reservoir units are in the sedimentary sequence of zone D, B and the middle part of zone C (C2). On the other hand, petrophysics (Claystone/shale, dolomadstone sandy) related to low-energy environments of Braided river (floodplain), meandering river and superatidal stream (above tidal), the Poorest reservoir unit of these sequences in zone A, E sediment sequence and alternately formed in zones C and D.
 

کلیدواژه‌ها [English]

  • Hydraulic Flow Unit
  • Flow Zone Indicator
  • Electro facies
  • MRGC Clustering
  • Sedimentary Sequence
  • Shurijeh Formation
[1]. Moussavi-Harami R, Brenner R L (1990) Lower cretaceous (Neocomian) fluvial deposits in eastern Kopet-Dagh basin, Northeastern Iran, Cretaceous Research, 11, 2: 163-174.##
[2]. Moussavi-Harami R A, Mahboubi M, Nadjafi R, Brenner M, Mortazavi (2009) Mechanism of calcrete formation in the Lower Cretaceous (Neocomian) fluvial deposits, northeastern Iran based on petrographic, Geochemical Data, Cretaceous Research, 30, 5: 1146-1156.##
[3]. Moussavi‐Harami R, Brenner R (1993) Diagenesis of non‐marine petroleum reservoirs: The Neocomian (Lower Cretaceous) Shurijeh Formation, Kopet‐Dagh Basin, NE Iran, Journal of Petroleum Geology, 16, 1: 55-72. ##
[4]. Moussavi-Harami R, Brenner R L (1992) Geohistory analysis and petroleum reservoir characteristics of Lower Cretaceous (Neocomian) sandstones, eastern Kopet-Dagh Basin, northeastern Iran, AAPG bulletin, 76, 8: 1200-1208. ##
[5]. Harb A A (1979) The stratigraphy, tectonics and petroleum geology of the Kopet Dagh region, Northern Iran, Imperial College London (University of London).##
[6]. Moore CH, Wade W J (2013) Carbonate reservoirs: Porosity and diagenesis in a sequence stratigraphic framework, Newnes.##
[7]. Catuneanu O, Abreu V, Bhattacharya J P, Blum M D, Dalrymple RW, Eriksson P G, Fielding C R, Fisher, W L, Galloway W E, Gibling M R, Giles K A (2009) Towards the standardization of sequence stratigraphy, Earth-Science Reviews, 92, 1-2: 1-33.##
[8]. Ebanks Jr W (1987) Flow unit concept-integrated approach to reservoir description for engineering projects, AAPG (Am. Assoc. Pet. Geol.) Bull. ;(United States). 71(CONF-870606-).##
[9]. Amaefule J O, Altunbay M, Tiab D, Kersey D G, Keelan D K (1993) Enhanced reservoir description: using core and log data to identify hydraulic (flow) units and predict permeability in uncored intervals/wells, In SPE Annual Technical Conference and Exhibition, OnePetro. ##
[10]. طباطبایی پ، لاسمی ی، جهانی د، اصیلیان مهابادی ح (1392) رخساره‌ها و محیط‌های رسوبی سازند شوریجه در برش‌های قرقره و خانگیران، خاور حوضه رسوبی کپه داغ، ماهنامه علمی اکتشاف و تولید نفت و گاز، 104: 78-72.##
[11]. Jamali A (2011) Biostratigraphy and lithostratigraphy of the Lower Cretaceous deposits in the east of Kopet-Dagh, Unpublished PhD Thesis, University of Shahid Beheshti, 448. ##  
[12]. مرتضوی م، موسوی حرمی ر، محبوبی ا، نجفی م (1391) خاک‌های دیرینه (پالئوسل)، انواع و ویژگی‌های آن در سازند شوریجه (ژوراسیک پسین-کرتاسه پیشین)، حوضه رسوبی کپه داغ، شمال شرق ایران، پژوهش‌های چینه‌نگاری و رسوب‌شناسی. 46: 32-1.##
[13]. گل افشانی ط، خانه باد م، موسوی حرمی ر، محبوبی ا (1393) محیط رسوبی و برخاستگاه ماسه‌سنگ‌های سازند شوریجه (نئوکومین) در برش آبگرم، شرق حوضه کپه داغ، رخساره‌های رسوبی، 7، 1، 149-125. ##
[14]. Mordvintsev D, Barrier E, Brunet M F, Blanpied C, Sidorova I (2017) Structure and evolution of the Bukhara-Khiva region during the Mesozoic: the northern margin of the Amu-Darya Basin (southern Uzbekistan), Geological Society, London, Special Publications, 427, 1: 145-174. ##
[15]. Folk R L (1974) Petrology of sedimentary rocks: Hemphill Pub. Co., Austin-Texas, 182. ##
[16]. Pettijohn F J, Potter P E, Siever R (1987) Sandy depositional systems, In Sand and Sandstone, 341-423, Springer, New York, NY. ##
[17]. Miall A D (2013) The geology of fluvial deposits: sedimentary facies, basin analysis, and petroleum geology, Springer. ##
[18]. صبوحی م، رضائی پ (1398) واحدهای جریانی هیدرولیکی ریزرخساره‌های مخزنی ناحیه پشته کربناته نهشته‌های سازند کنگان (تریاس پیشین) و ارتباط آن با محیط رسوبی و دیاژنز. دوفصلنامه رسوب شناسی کاربردی، 7، 13: 183-167. ##
[19]. حسینی ک، رضائی پ، شیرودی س ک (1399) تحلیلی بر رخساره‌های الکتریکی، واحدهای جریانی و بررسی توان مخزنی سازند میشریف (سنومانین-تورونین) در میدان نفتی اسفند، خلیج فارس. دوفصل‌نامه رسوب‌شناسی کاربردی. 8، 15: 64-46. ##
[20]. کدخدائی ع (1397) ارزیابی سازند های نفت‌دار، دایره دانش، 552.##
[21]. غلامی ر، سلیمانی ب (1396) تعیین واحدهای جریان هیدرولیکی با استفاده از روش‌های مختلف در سازند کربناته ایلام واقع در یکی از میادین نفتی جنوب غربی ایران. ماهنامه علمی اکتشاف و تولید نفت و گاز، 142: 65-60. ##
[22]. Abbaszadeh M, Fujii H, Fujimoto F (1996) Permeability prediction by hydraulic flow units-theory and applications, SPE Formation Evaluation, 11, 04: 263-271. ##
[23]. Serra O, Abbott H (1980) The contribution of logging data to sedimentology and stratigraphic, SPE 9270, in 55th Annual Fall Technical Conference and Exhibition, Dallas, Texas. ##
[24]. جمشیدی م، گلی ط، جلیلیان ع ح، ارزانی ن، ارشد ع و (1395) بررسی رخساره‌های رسوبی و الکتریکی مخزن بنگستان با بهره‌گیری از روش MRGC در میدان نفتی قلعه نار، جنوب باختری ایران، دوفصل‌نامه رسوب‌شناسی کاربردی، 4، 8: 55-42. ##
[25]. Wolf M, Pelissier-Combescure J (1982) FACIOLOG-automatic electrofacies determination. in SPWLA 23rd Annual Logging Symposium, OnePetro. ##
[26]. Busch J W, Berry L N (1987) Determination of lithology from well logs by statistical analysis, SPE Formation Evaluation, 2, 04: 412-418. ##