[1]. Meyer BL, Nederlof MH (1984) Identification of source rocks on wireline logs by density/resistivity and sonic transit time/resistivity crossplots, AAPG Bulletin, 68:121-129. ##
[2]. Passey QR, Creaney S, Kulla JB, Moretti FJ, Stroud JD (1990) A practical model for organic richness from porosity and resistivity logs, AAPG Bulletin, 74:1777-1794. ##
[3]. Huang Z, Williamson MA (1996) Artificial neural network modelling as an aid to source rock characterization, Marine and Petroleum Geology, 13:277-290. ##
[4]. Kamali MR, Mirshady AA (2004) Total organic carbon content determined from well logs using ΔLogR and Neuro Fuzzy techniques, Journal of Petroleum Science and Engineering, 45:141-148. ##
[5]. Alizadeh B, Najjari S, Kadkhodaie-Ilkhchi A (2012) Artificial neural network modeling and cluster analysis for organic facies and burial history estimation using well log data: A case study of the South Pars Gas Field, Persian Gulf, Iran, Computers and Geosciences, 45:261-269. ##
[6]. Siddig O, Ibrahim AF, Elkatatny S (2021) Application of various machine learning techniques in predicting total organic carbon from well logs, Computational Intelligence and Neuroscience, 2021:1-8. ##
[7]. Alizadeh B, Maroufi K, Heidarifard MH (2018) Estimating source rock parameters using wireline data: An example from Dezful Embayment, South West of Iran, Journal of Petroleum Science and Engineering, 167:857-868. ##
[8]. Asgari Nezhad Y, Moradzadeh A, Kamali MR (2018) A new approach to evaluate organic geochemistry parameters by geostatistics methods: A case study from Western Australia, Journal of Petroleum Science and Engineering, 169:813-824.
[9]. Dreyfus G (2005) Neural networks: Methodology and applications, Berlin: Springer. ##
[10]. Yu C C, Liu B D (2002) A backpropagation algorithm with adaptive learning rate and momentum coefficient, Proceedings of the 2002 International Joint Conference on Neural Networks, Honolulu, 1218-1223. ##
[11]. Gowda CC, Mayya SG (2014) Comparison of back propagation neural network and genetic algorithm neural network for stream flow prediction, Journal of Computational Environmental Sciences, 2014:1-6. ##
[12]. Katoch S, Chauhan SS, Kumar V (2021) A review on genetic algorithm: Past, present, and future, Multimedia Tools and Applications, 80:8091-8126. ##
[13]. Hosseini Z, Gharechelou S, Nakhaei M, Gharechelou S (2016). Optimal design of BP algorithm by ACOR model for groundwater-level forecasting: A case study on Shabestar plain, Iran, Arabian Journal of Geosciences, 9:436. ##
[14]. خامهچی ا، قاسمی م، کاشی م (1398) تخمین دقیق پارامترهای چاهآزمایی با استفاده از یک الگوریتم ترکیبی و مقایسه آن با یک نرمافزار رایج صنعتی، مجله پژوهش نفت، 29: 40-28. ##
[15]. Moazzeni A, Khamehchi E (2019) Drilling rate optimization by automatic lithology prediction using hybrid machine learning, Journal of Petroleum Science and Technology, 9:77-88. ##
[16]. Pakdel M, Behroozsarand A (2020) Using hybrid artificial neural network-particle swarm optimization for prediction of HIPS mechanical properties, Journal of Petroleum Science and Technology, 10:53-66. ##
[17]. Hosseini Z, Gharechelou S, Mahboubi A, Moussavi-Harami R, Kadkhodaie-Ilkhchi A, Zeinali M (2021) Shear wave velocity estimation utilizing statistical and multi-intelligent models from petrophysical data in a mixed carbonate-siliciclastic reservoir in Southwest of Iran, Iranian Journal of Oil and Gas Science and Technology, 10:15-39. ##
[18]. حسینی ز، محبوبی ا، کدخدائی ع (1396) آنالیز یک مدلسازی ترکیبی بهمنظور تعیین TOC در سنگهای منشأ میدان نفتی اهواز، مجله پژوهش نفت، 27: 59-48. ##
[19]. Kadkhodaie-Ilkhchi A, Rahimpour-Bonab H, Rezaee M (2009) A committee machine with intelligent systems for estimation of total organic carbon content from petrophysical data: An example from Kangan and Dalan reservoirs in South Pars Gas Field, Iran, Computers & Geosciences, 35:459-474. ##
[20]. Tabatabaei SME, Kadkhodaie-Ilkhchi A, Hosseini Z, Asghari Moghaddam A (2015) A hybrid stochastic-gradient optimization to estimating total organic carbon from petrophysical data: A case study from the Ahwaz oilfield, SW Iran, Journal of Petroleum Science and Engineering, 127:35-43. ##
[21]. Wang P, Peng S, He T (2018) A novel approach to total organic carbon content prediction in shale gas reservoirs with well logs data, Tonghua Basin, China, Journal of Natural Gas Science and Engineering, 55:1-15. ##
[22]. Bordenave M L, Hegre J A (2010) Current distribution of oil and gas fields in the Zagros Fold Belt of Iran and contiguous offshore as the result of the petroleum systems, In: Leturmy P, Robin C, eds. Tectonic and Stratigraphic Evolution of Zagros and Makran during the Mesozoic-Cenozoic, London: Geological Society of London, Special Publications, 291-353. ##
[23]. Sherkati S, Letouzey J (2004) Variation of structural style and basin evolution in the central Zagros (Izeh zone and Dezful Embayment), Iran, Marine and Petroleum Geology, 21:535-554. ##
[24]. Sepehr M, Cosgrove JW (2004) Structural framework of the Zagros Fold-Thrust Belt, Iran, Marine and Petroleum Geology, 21:829-843. ##
[25]. مرادی م، موسوی حرمی س ر، صادقی ق (1394) تهیه مدل ژئواستاتیک مخزن آسماری میدان نفتی منصوری با استفاده از نرمافزار RMS، مجله پژوهش نفت، 25: 173-185. ##
[26]. آقانباتی س ع (1383) زمینشناسی ایران، انتشارات سازمان زمینشناسی و اکتشافات معدنی کشور، تهران. ##
[27]. Espitalié J, Laporte JL, Madec M, Marquis F, Leplat P, Paulet J, Boutefeu A (1997) Méthode rapide de caractérisation des roches mètres, de leur potentiel pétrolier et de leur degré d›évolution, Revue de l’Institut Français du Pétrole, 32:23-42. ##
[28]. Baudin F, Disnar J, Aboussou A, Savignac F (2015) Guidelines for Rock-Eval analysis of recent marine sediments, Organic Geochemistry, 86:71-80. ##
[29]. Lafargue E, Marquis F, Pillot D (1998) Rock-Eval 6 applications in hydrocarbon exploration, production, and soil contamination studies, Revue de l’Institut Français du Pétrole, 53:421-437. ##
[30]. Alizadeh B, Seyedali SR, Sarafdokht H (2019) Effect of bitumen and migrated oil on hydrocarbon generation kinetic parameters derived from Rock-Eval pyrolysis, Petroleum Science and Technology, 37:2114-2121. ##
[31]. Walczak S, Cerpa N (2003) Artificial neural networks, In: Meyers RA, ed. Encyclopedia of Physical Science and Technology, 3rd ed., New York: Academic Press, 631-645. ##
[32]. McCulloch WS, Pitts WH (1943) A logical calculus of the ideas immanent in nervous activity, Bulletin of Mathematical Biophysics, 5:115-133. ##
[33]. Graupe D (2013) Principles of artificial neural networks, 3rd ed., Singapore: World Scientific. ##
[34]. Sairamya NJ, Susmitha L, George ST, Subathra MSP (2019) Hybrid approach for classification of electroencephalographic signals using time-frequency images with wavelets and texture features, In: Hemanth DJ, Gupta D, Balas VE, eds. Intelligent data analysis for biomedical applications: Challenges and solutions, Academic Press, 253-273. ##
[35]. Holland JH (1975) Adaptation in natural and artificial systems, Ann Arbor: The University of Michigan Press. ##
[36]. Sivanandam SN, Deepa SN (2008) Introduction to genetic algorithms, Berlin: Springer-Verlag. ##
[37]. Kennedy J, Eberhart R (1995) Particle swarm optimization, Proceedings of IEEE international conference on neural networks, Perth, Australia, 1942-1948. ##
[38]. Upendar J, Gupta CP, Singh GK, Ramakrishna G (2010) PSO and ANN-based fault classification for protective relaying, IET Generation, Transmission and Distribution, 4:1197-1212. ##
[39]. Jain NK, Nangia U, Jain J (2018) A review of particle swarm optimization, Journal of The Institution of Engineers (India): Series B, 99:407-411. ##
[40]. Chan FTS, Tiwari MK (2007) Swarm intelligence: Focus on ant and particle swarm optimization, Vienna: I-Tech Education and Publishing. ##
[41]. de Almeida BSG, Leite VC (2019) Particle swarm optimization: A powerful technique for solving engineering problems, In: Del Ser J, Villar E, Osaba E, eds. Swarm intelligence: Recent advances, new perspectives and applications, London: IntechOpen, 31-52. ##
[42]. Semero YK, Zhang J, Zheng D (2018) PV power forecasting using an integrated GA-PSO-ANFIS approach and Gaussian process regression-based feature selection strategy, CSEE Journal of Power and Energy Systems, 4:210-218. ##
[43]. Chau KW (2007) Application of a PSO-based neural network in analysis of outcomes of construction claims, Automation in Construction, 16:642-646. ##
[44]. Nadi A, Tayarani-Bathaie SS, Safabakhsh R (2009) Evolution of neural network architecture and weights using mutation based genetic algorithm, Proceedings of the 14th International CSI Computer Conference, Tehran, Iran, 536-540. ##
[45]. جنتمکان ن. (1390) انطباق دادههای ژئوشیمیایی آلی با چینهنگاری سکانسی جهت ارزیابی پتانسیل هیدروکربوری سازند پابده در میدان نفتی منصوری، پایاننامه کارشناسی ارشد، دانشگاه شهید چمران اهواز. ##
[46]. Peters KE, Cassa MR (1994) Applied source rock geochemistry, In: Magoon LB, Dow WG, eds. The petroleum system - From source to trap, Tulsa: American Association of Petroleum Geologists. ##
[47]. Langford FF, Blanc-Valleron MM (1990) Interpreting Rock-Eval pyrolysis data using graphs of pyrolizable hydrocarbons vs. total organic carbon, AAPG Bulletin, 74:799-804. ##
[48]. McCarthy K, Rojas K, Niemann M, Palmowski D, Peters K, Stankiewicz A (2011) Basic petroleum geochemistry for source rock evaluation, Oilfield Review, 23:32-43. ##
[49]. Alizadeh B, Opera A, Kalani M, Alipour M (2020) Source rock and shale oil potential of the Pabdeh Formation (Middle-Late Eocene) in the Dezful Embayment, southwest Iran, Geologica Acta, 18:1-22. ##