شبیه‌سازی مقیاس حفره اسیدزنی سنگ کربناته با روش شبکه بولتزمان و پالایش گریدی محلی

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی شیمی و نفت، دانشگاه صنعتی شریف، تهران،‌ ایران

چکیده

در فرآیند اسیدزنی مخازن نفت و گاز، اسید تزریق شده در اثر واکنش با ذرات سنگ و تغییر ساختار حفرات سنگ، بر کیفیت جریان سیالات تأثیر می گذارد. در مدل‌سازی این فرآیند با روش مقیاس پیوسته،  به‌دلیل وجود گرادیان غلظت در مجاورت ذرات سنگ و تغییرات پیوسته محیط متخلخل، برقراری پیوستگی در ضریب انتقال جرم و رابطه تخلخل-تراوایی که وابسته به ساختار حفرات هستند محل اشکال و مناقشه بوده و نیاز به مدل‌سازی در مقیاس حفره مشهود است. روش نوین این مطالعه در ترکیب شرایط واکنشی با روش پالایش گریدی است که با استفاده از شبکه بولتزمان ضریب انتقال جرم محلی را در مقیاس حفره و در محیط متخلخل متغیر محاسبه می‌نماید. روش پالایش گریدی چهارگانه درختی یک تفکیک‌گر تراکم شبکه ای چندمقیاسی مبتنی بر تقسیمات برگشتی است که توانایی کاهش بار محاسباتی و در عین حال حفظ دقت مطلوب را داراست. نتایج شبیه‌سازی با یک و دو درجه تفکیک تراکم شبکه‌ای، افزایش دو تا سه برابری سرعت محاسبات را نسبت به مدل شبکه ریز یکنواخت نشان می‌دهد. این تحقیق با استفاده از مدل توسعه داده شده ضمن بازتولید نتایج آزمایشگاهی الگوی انحلال کرمچاله، تغییرات تخلخل-تراوایی و ضریب انتقال جرم را در اثر انحلال سنگ و در شرایط جریانی متفاوت با استفاده از اعداد بی بعد دامکولر، پکلتو شروود مورد بحث قرار می‌دهد. نتایج این تحقیق نشان می‌دهد بین میزان انحلال و تغییرات عدد شروود رابطه وجود دارد. همچنین، می‌توان با تحلیل رابطه کوزنی-کارمن در شرایط جریانی متفاوت، تغییرات تخلخل- تراوایی را دقیق‌تر بررسی نمود. بنابراین، روش پالایش گریدی ابزاری به‌دست می‌‎دهد تا با دستیابی به دامنه شبیه‌سازی بزرگتر در مقیاس حفره، رابطی بین مقیاس حفره و دارسی ایجاد نمود.
 

کلیدواژه‌ها


عنوان مقاله [English]

Pore Scale Simulation of Carbonate Acidizing Using Lattice Boltzmann and Local Grid Refinement Method

نویسندگان [English]

  • Sadegh Mahmoudi
  • Saeid Jamshidi
  • Shahab Ayatollahi
Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
چکیده [English]

During the Acidizing process in oil and gas reservoirs, the injected acid reacts with the rock grains, changes the rock pore structure and affects the flow conditions. Due to the presence of a concentration gradient at the vicinity of the rock grains and the continuous changes in rock-fluid interfaces, the continuum assumption of the effective local mass transport coefficient and porosity-permeability relation in the continuum scale modeling of this process has been remained debatable. Therefore, the need for pore scale modelling is evident. The novelty of this study relies in adapting the grid refinement method on reactive flow modeling that implements the Lattice Boltzmann method to compute the effective local mass transport coefficient on the pore scale and in changing porous media. Quadtree grid refinement method is a multiscale mesh refiner that adjusts the grid resolution based on recursive subdivisions, and it is able to reduce the computational load while keeping the desired precision. The simulation results with one- and two-level refinements show that quadtree is two to three times faster relative to uniform fine grid model. Meanwhile, this study uses the constructed model to regenerate the experimental results of wormhole dissolution pattern and discusses the variation in the porosity-permeability relation and the mass transport coefficient due to rock dissolution at different flow conditions that are characterized using the dimensionless numbers of Damkohler, Peclet and Sherwood. The simulation results demonstrate the relation between the dissolution and the Sherwood number and indicate that accurate investigation of the variation in porosity-permeability relation can be performed through analyzing the Kozeny-Carman relation in different flow conditions. Therefore, grid refinement method provides a Pore-Darcy scale bridging tool by achieving larger simulation domains on the pore scale.
 

کلیدواژه‌ها [English]

  • Lattice Boltzmann
  • Grid Refinement
  • Reactive Flow
  • Mass Transport Coefficient
  • Porosity-permeability Variation
[1]. نظری صارم م و مرادی م (1400) شبیه‌ســازی تزریــق بهینــه اســیدهای قــوی و ضعیــف در مخــازن کربناتــه، مطالعــه مــوردی، اسـیدکاری در دو لایـه هیدروکربـوری مربـوط بـه یکـی از مخـازن جنـوب غـرب ایـران، پژوهش نفت، 31، 120: صفحات 114-126.##
[2]. جعفری‌راد م، آذین ر، عصفوری ش و فاتحی ر (1393) شبیه‌سازی جابه‌جایی طبیعی در فرآیند دفع گازهای اسیدی به سازند آبده، پژوهش نفت، 24، 77: صفحات 100-109. ##
[3]. Molins S (2012) An investigation of the effect of pore scale flow on average geochemical reaction rates using direct numerical simulation, Water Resources Research, 48. ##
[4]. Molins S (2015) Reactive interfaces in direct numerical simulation of pore-scale processes, Reviews in Mineralogy and Geochemistry, 80: 461-481. ##
[5]. Kang Q, Lichtner P C, Zhang D (2007) An improved lattice Boltzmann model for multicomponent reactive transport in porous media at the pore scale, Water Resources Research, 43: 12. ##
[6]. Kang Q, Chen L, Valocchi A J, Viswanathan H S (2014) Pore-scale study of dissolution-induced changes in permeability and porosity of porous media, Journal of Hydrology, 517: 1049–1055. ##
[7]. Tartakovsky A M, Tartakovsky D M, Scheibe T D, Meakin (2008) Hybrid simulations of reaction-diffusion systems in porous media, SIAM Journal on Scientific Computing, 30, 6: 2799–2816. ##
[8]. Nunes P, Blunt M J, Bijeljic B (2016) Pore-scale simulation of carbonate dissolution in micro-CT images, Journal of Geophysical Research: Solid Earth, 121, 2: 558-576. ##
[9]. Boek E S, Zacharoudiou I, Gray F, Shah SMK, Crawshaw J, Yang J (2014) Multiphase flow and reactive transport at the pore scale using Lattice-Boltzmann computer simulations, SPE journal, 22, 3: 940-949. ##
[10]. Meakin P, Tartakovsky A M (2009) Modeling and simulation of pore-scale multiphase fluid flow and reactive transport in fractured and porous media, Reviews of Geophysics, 47: 3. ##
[11]. Yang J, Boek E S (2013) A comparison study of multi-component Lattice Boltzmann models for flow in porous media applications, Computers and Mathematics with Applications, 65: 882–890. ##
[12]. Min T, Gao Y, Chen L, Kang Q, Tao W Q (2016) Changes in porosity, permeability and surface area during rock dissolution: Effects of mineralogical heterogeneity, International Journal of Heat and Mass Transfer, 103 900–913. ##
[13]. Mostaghimi P, Liu M, Arns C H (2016) Numerical simulation of reactive transport on micro-ct images, Math Geosci, Springer, 48, 8: 963-983. ##
[14]. Liu M, Mostaghimi P (2017) Characterization of reactive transport in pore-scale correlated porous media, Chemical Engineering Science, 173: 121–130. ##
[15]. Liu M, Mostaghimi P (2017) High-resolution pore-scale simulation of dissolution in porous media, Chemical Engineering Science, 161: 360-369. ##
[16]. Prasianakis N I, Gatschet M, Abbasi A, Churakov S V (2018) Upscaling strategies of porosity-permeability correlations in reacting environments from pore-scale simulations, Hindawi Geofluids. ##
[17]. Chen Y, Kang Q, Cai Q, Zhang D (2011) Lattice boltzmann method on quadtree grids, Physical Review e 83: 2. ##
[18]. Foroughi S, Jamshidi S, Masihi M (2013) Lattice Boltzmann method on Quadtree grids for simulating fluid flow through porous media: A new automatic algorithm, Physica A 392: 4772–4786. ##
[19]. Zhang L, Kang Q, Chen L, Yao J (2016) Simulation of flow in multi-scale porous media using the lattice boltzmann method on quadtree grids, Communications in Computational Physics, 19, 4: 998-1014. ##
[20]. Neumann P, Neckel T (2013) A dynamic mesh refinement technique for Lattice Boltzmann simulations on octree-like grids, Computational Mechanics, 51, 2: 237-253. ##
[21]. Yu Z, Fan L S (2009) An interaction potential based lattice Boltzmann method with adaptive mesh refine ment (AMR) for two-phase flow simulation, Journal of Computational Physics, 228 6456–6478. ##
[22]. Song W (2014) Microfluidic visualization of phase and flow phenomena related to carbon dioxide transport and usage, Thesis for Master of Applied Sciences, University of Toronto, Canada. ##
[23]. Dawson S P, Chen S, Doolen G D (1993) Lattice boltzmann computations for reaction-diffusion equations, The Journal of Chemical Physics, 98: 1514 – 1523. ##
[24]. Guo Z, Zheng C, Shi B (2002) Discrete lattice effects on the forcing term in the lattice Boltzmann method, Physical Review, E 65, 4: 046308. ##
[25]. Krüger T, (2017) the Lattice Boltzmann method, Springer Book, 297-311. ##
[26]. Samet H (1984) The quadtree and related hierarchical data structures, Computing Surveys, 16: 2. ##
[27]. Yoshino M, Inamuro T (2003) Lattice Boltzmann simulations for flow and heat/mass transfer problems in a three-dimensional porous structure, International Journal for Numerical Methods in Fluids, 43:183–198. ##