برنامه‌ریزی ارسال فرآورده‌های نفتی چندگانه در شبکه خطوط انتقال براساس راه‌کار کنترل پیش‌بین: برنامه‌ریزی خودکار کوتاه‌مدت در حضور اختلال

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی برق، پردیس فنی و مهندسی، دانشگاه یزد، ایران

چکیده

یکی از راه‌های مطمئن و مقرون به‌صرفه برای پاسخ‌گویی به نیازهای محلی به انواع سوخت‌های فسیلی، انتقال فرآورده‌های نفتی بر بستر شبکه خطوط انتقال است. در راستای تحقق این هدف فرآورده‌های نفتی در قالب بسته‌های با حجم معین به‌طور متوالی درون خطوط انتقال ارسال می‌شوند. مسأله برنامه‌ریزی انتقال بسته‌های مواد نفتی درون خطوط لوله‌های انتقال برای تأمین نیازهای دوره‌ای سیستم توزیع فرآورده‌های نفتی با تضمین محدود‌یت‌ها‌ در حوزه‌های تولید، انتقال و ذخیره‌سازی فرآورده‌های نفتی، حائز اهمیت است. در این مقاله با استفاده از راه‌کار کنترل پیش‌بین مبتنی بر مدل فضای حالت و در قالب یک مسأله بهینه‌سازی مقید به برنامه‌ریزی در بازه‌های زمانی کوتاه‌مدت روزانه در طول یک ماه در حضور اثر اختلال قطع مسیرهای شبکه پرداخته شده است. بر‌اساس راه‌کار کنترل افق لغزان در انتهای هر روز، فرآیند برنامه‌ریزی به‌صورت برخط با افق پیش‌بین هفتگی اجرا شده است و مقادیر کنترل بهینه مربوط به روز اول به‌عنوان ورودی تصمیم به سیستم انتقال اعمال می‌شود. نتایج فرآیند برنامه‌ریزی نشان می‌دهد که مقادیر برنامه‌ریزی شده اهداف ذخیره‌سازی سیستم انتقال را با در نظرگرفتن محدودیت‌ها و اختلالات موجود برآورده می‌کند.
 

کلیدواژه‌ها


عنوان مقاله [English]

Planning the Transportation of Multiple Petroleum Products in Pipeline Network based on Model Predictive Control: Automated Planning in the Presence of Disturbance

نویسندگان [English]

  • Seyyed Hossein Ghenaati
  • shahram aghaei
Department of Electrical Engineering, Faculty of Engineering, Yazd University, Iran
چکیده [English]

Multiple pipeline network is known as the safest and the most cost-effective method to transport local needs for a variety of fossil fuels. In order to achieve this goal, petroleum products in the form of batches with a certain volume must be transported consecutively within the pipelines. The issue of planning the transportation of petroleum product batches within a multiple pipeline network is significant to fulfill the periodic demands of the refined petroleum products distribution system. The multiple pipeline network as a constrained system includes various types of restrictions in the field of production, transportation, and storage of petroleum products. In this paper, we presented automated planning in the form of a constrained optimization problem applying model predictive control strategy based on the nonlinear state-space model. And then we implemented the receding horizon control strategy to delineate daily schedule during a month in the presence of breakdown disturbance such an online planning process that optimization was performed by a weekly prediction horizon at the end of each day and the optimal solution for the first day was applied to the multiple pipeline network as the next day plan. The results of the proposed method show that the optimized plan satisfies the transportation goals regarding the existing constraints and breakdown disturbances.
 

کلیدواژه‌ها [English]

  • Multiple Pipeline Network
  • Automated Planning
  • Receding Horizon Control
  • Model Predictive Control
  • Constrained Optimization
[1]. Khlebnikova E, Sundar K, Zlotnik A, Bent R, Ewers M, Tasseff B (2020) Optimal economic operation of liquid petroleum products pipeline systems, AIChE Journal, 67, 4: e17124.##
[2]. کبیری م، شهرخی م، عیدی ع. براهیمی ا، برنامه‌ریزی حمل و نقل فرآورده‌های نفتی چندگانه با در نظر گرفتن پنجره زمانی برای عرضه، تقاضا و مسیرهای حمل و نقل (مطالعه موردی: استان کردستان)، مجله مهندسی صنایع شریف، 33، 1، 1396. ##
[3]. قناعتی س. ح. و آقایی ش.، برنامه‌ریزی ارسال فرآورده‌های نفتی چندگانه در شبکه خطوط انتقال براساس راه‌کار کنترل‌پیش‌بین: مدل‌سازی دینامیکی شبکه و برنامه‌ریزی بلندمدت، پژوهش نفت، دوره 30، 99-1، 112-99، 1399. ##
[4] .Pellerin R, Perrier N (2019) A review of methods, techniques and tools for project planning and control, International Journal of Production Research, 57, 7: 2160-2178. ##
[5]. Hane C A, Ratliff H D (1995) Sequencing inputs to multi-commodity pipelines, Annals of Operations Research, 57, 1: 73-101. ##
[6]. Mostafaei H, Castro P M, Oliveira F, Harjunkoski I (2020) Efficient formulation for transportation scheduling of single refinery multiproduct pipelines, European Journal of Operational Research, 293, 2: 731-747. ##
[7]. Cafaro D C, Cerdá J (2009) Optimal Scheduling of Refined Products Pipelines with Multiple Sources,” Industrial and Engineering Chemistry Research, 48, 14: 6675-6689. ##
[8]. Tsunoda Meira W H, Magatão L, Relvas S, Barbosa-Póvoa A P, Neves Jr F, Arruda L V (2018) A matheuristic decomposition approach for the scheduling of a single-source and multiple destinations pipeline system, European Journal of Operational Research, 268, 2, 665-687. ##
[9]. Tsunoda Meira W H, Magatão L, Neves Jr F, Arruda L V R, Vaqueiro J P, Relvas S, Barbosa-Póvoa A P (2021) A solution framework for the long-term scheduling and inventory management of straight pipeline systems with multiple-sources, Computers and Operations Research, 127: 105143. ##
[10]. Bueno L, Magatão L, Arruda L V R, Neves F, Monteiro A, Vaqueiro J P (2020) Assigning and sequencing batches and blends of oil derivatives in a mesh-like pipeline network, Computers and Chemical Engineering,  139: 106894. ##
[11]. Rejowski Jr R, Pinto J M (2008) A novel continuous time representation for the scheduling of pipeline systems with pumping yield rate constraints, Computers and Chemical Engineering, 32, 4-5: 1042-1066. ##
[12]. Ghallab M, Nau D, Traverso P (2004) Automated Planning: theory and practice, Elsevier. ##
[13]. Gupta D, Maravelias C T, Wassick J M (2016) From rescheduling to online scheduling, Chemical Engineering Research and Design, 116, 83-97. ##
[14]. De Roo G, and Hillier J (2016) Complexity and planning: Systems, assemblages and simulations, Routledge. ##
[15]. Russell S J, Norvig P (2016) Artificial intelligence: a modern approach, Malaysia; Pearson Education Limited. ##
[16]. Shobrys D E, White D C (2002) Planning, scheduling and control systems: why cannot they work together, Computers and Chemical Engineering, 26, 2: 149-160. ##
[17]. Subramanian K, Maravelias C T, Rawlings J B (2012) A state-space model for chemical production scheduling, Computers and Chemical Engineering, 47, 97-110. ##
[18]. Bellman R (1966) Dynamic programming, Science, 153: 3731, 34-37. ##
[19]. Nau D S (2007) Current trends in automated planning, AI magazine, 28, 4: 43-43. ##
[20]. Yüzgeç U, Palazoglu A, Romagnoli J A (2010) Refinery scheduling of crude oil unloading, storage and processing using a model predictive control strategy, Computers and Chemical Engineering, 34, 10: 1671-1686. ##
[21]. Ji J, Khajepour A, Melek W W, Huang Y (2016) Path planning and tracking for vehicle collision avoidance based on model predictive control with multiconstraints, IEEE Transactions on Vehicular Technology, 66: 2, 952-964. ##
[22]. Ghenaati S H, Aghaei S (2016) Speed control of autonomous underwater vehicle with constraints using model predictive control, International Journal of Coastal and Offshore Engineering, 3: 27-33. ##
[23]. Kwakernaak H, Sivan R (1972) Linear optimal control systems, Wiley-interscience New York. ##
[24]. Fernandez-Camacho E, Bordons-Alba C (1995) Model predictive control in the process industry, Springer London. ##