مدل‌سازی دوبعدی داده‌های مگنتوتلوریک به‌منظور آشکار‌سازی منابع هیدروکربوری با روش دوقطری‌سازی لنکزوس (مطالعه موردی: منطقه کاشان)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم زمین، دانشکده علوم پایه، دانشگاه آزاد اسلامی واحد علوم و تحقیقات تهران، ایران

2 دانشکده مهندسی معدن، نفت و ژئوفیزیک، دانشگاه صنعتی شاهرود، ایران

3 دانشکده علوم پایه، دانشگاه اراک، ایران

چکیده

روش مگنتوتلوریک از میدان‌های الکتریکی و مغناطیسی طبیعی و متغیر با زمان در سطح زمین جهت پی بردن به ساختارهای الکتریکی زمین مثل اکتشاف ساختارهای حاوی مواد هیدروکربوری استفاده می‌کند. در فرآیند وارون‌سازی داده‌های مگنتوتلوریک، روش محاسبه وارون ماتریس تأثیر به‌سزایی در سرعت وارونگی و کیفیت مدل‌های به‌دست آمده دارد. روش دوقطری‌سازی‌لنکزوس یک روش سریع و مؤثر برای مسائل وارون است. در این الگوریتم، سیستم روابطی با ابعاد کمتر جایگزین روابط اصلی می‌شود. علاوه‌بر ‌این برای تعیین پارامتر تنظیم از روش متعادل‌سازی قید فعال استفاده شده است. نتایج وارون‌سازی داده‌‌های مصنوعی نشان داد که روش لنکزوس سریع‌تر از روش متداول گرادیان مزدوج است و مدل به‌دست آمده با این روش کیفیت بهتری دارد. روش پیشنهادی همچنین برروی داده‌های مگنتوتلوریک منطقه کاشان اعمال شد. مدل به‌دست آمده سازند قم را که مهم‌ترین سنگ مخزن و سنگ منشا هیدروکربوری در ایران مرکزی است و دیگر ساختارهای زمین‌شناسی منطقه از قبیل تاقدیس نواب و گسل‌ها را به‌خوبی نشان می‌دهد. نتایج حاصل از مدل‌سازی با دو روش لنکزوس و گرادیان مزدوج و مقایسه آن‌ها با اطلاعات زمین‌شناسی نشان می‌دهد که مدل‌سازی با روش لنکزوس نتایج قابل قبول‌تر و نزدیک‌تری به مدل واقعی زمین نسبت به مدل به‌دست آمده با روش دیگر از خود نشان می‌دهد.
 

کلیدواژه‌ها


عنوان مقاله [English]

Two-dimensional Modeling of Magnetotelluric Data for Detection of Hydrocarbon Sources by Lanczos Bidiagonalization Method (Case Study: Kashan Region)

نویسندگان [English]

  • faegheh mina araghi 1
  • Mirsattar Meshinchi-Asl 1
  • Ali Nejati Kalateh 2
  • Mahmoud Mirzaei 3
1 Department of Earth Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
2 Faculty of Mining, Petroleum and Geophysics Engineering, Shahrood University of Technology, Shahrood, Iran
3 Department of Physics, Faculty of Science, Arak University, Arak, Iran
چکیده [English]

The magnetotelluric method uses natural and time-varying electric and magnetic fields on the earth’s surface to detect the earth’s electrical structures, such as hydrocarbons exploration. In the inversion process, the matrix inverse calculation method has a considerable effect on the inversion speed as well as the quality of obtained models. Lanczos Bidiagonalization (LB) method has been reported to be a fast and efficient approach for solving the inversion problems. In LB algorithm, the full set of equations is replaced by a dimensionally reduced system of equations. In addition, we employed Active Constraint Balancing (ACB) approach for determining the optimum regularization parameter. The results of the synthetic data inversion show that both methods require equal computer memory, but LB method is faster and more reliable than Conjugate Gradient (CG) method. The proposed approach was also applied to inverse real MT data collected from the Kashan area, which is the most interesting area for oil and gas exploration in the Central Iran Basin. The obtained model shows the Qom Formation, which is the most important reservoir rock and hydrocarbon source rock in central Iran, and other geological structures of the region, such as the Navab anticline and faults.

کلیدواژه‌ها [English]

  • Magnetotelluric
  • Lanczos Bidiagonalization
  • Qom Formation
  • Active Constraint Balancing (ACB)
  • Kashan
[1]. Vozoff  K (1987) The magnetotelluric method  In: Nabighian, M.N. (Ed.), Electromagnetic Methods in Applied Geophysics, 2, SEG, Tulsa, OK , 641-707.##
[2]. Dobrin M D, Savit C H (1988) Introduction to Geophysical Prospecting 4th ed.McGraw-Hill, New York, 868. ##
[3]. Sarvandani M M, Kalateh A N, Unsworth M, Majidi A (2017) Interpretation of magnetotelluric data from the Gachsaran oil field using sharp boundary inversion, Journal of Petroleum Science and Engineering, 149: 25–39. ##
[4]. Watts M D, Pince A (1998) Petroleum exploration in overthrust area using magnetotelluric and seismic data, SEG expanded abstract, New Orleans. ##
[5]. Xiao W, Unsworth M (2006) Structural imaging in the Rocky Mountain Foothills (Alberta) using magnetotelluric exploration, AAPG Bull, 90: 321–333. ##
[6]. Christopherson K R (1991) Applications of magnetotelluric to petroleum exploration in Papua New Guinea: a model for frontier area, Lead. Edge, 10: 21–27. ##
[7]. هاشمی ن (1391 ) وارون‌سازی داده‌های مگنتوتلوریک جهت اکتشاف ساختارهای هیدروکربوری کپه داغ غربی، پایان نامه کارشناسی ارشد، دانشگاه صنعتی شاهرود، ایران. ##
[8].  Mansouri I, Oskooi B, Pedersen L (2015) Magnetotelluric signature of anticlines in Iran›s Sehqanat oil field, Tectonophysics, 654, 1: 101-112. ##
[9]. البرزیان ش، مرادزاده ع، قائدرحمتی ر، نجاتی کلاته ع و کشکولی م (1397) مدل‌سازی دوبعدی مرزهای تیز داده‌های مگنتوتلوریک به‌منظور تشخیص ساختارهای هیدروکربوری منطقه گچساران، زمین‌شناسی کاربردی پیشرفته، 27: 12-1. ##
[10]. مطیعی، ه (1374) چینه‌شناسی زاگرس، انتشارات سازمان زمین‌شناسی کشور. ##
[11]. Guoqiang X, Shaonan Z, Zhongdong L, Lailiang S, Huimin L (2007) Carbonate sequence stratigraphy of a back-arc basin: a case study of the qom formation in the kashan area, Central Iran, Acta Geologica Sinica-English Edition, 81: 488–500. ##
[12]. Ward S H, Hohmann G W (1991) Electromagnetic theory for geophysical applications: electromagnetic methods in applied geophysics 2, 3, Nabighian, M. N, Ed, SEG Investigations in geophysics, 131-311. ##
[13]. Swift C M (1967) A magnetotelluric investigation of electrical conductivity anomaly in the southwestern United States, PhD Thesis Massachusetts Institute of Technology, Cambridge, MA. ##
[14]. Lilley F E M (1976) Diagrams for magnetotelluric data, Geophysics, 41: 766–770. ##
[15]. Reddy I K, Rankin D, Phillips R J (1977) Three-dimensional modeling in magnetotelluric and magnetic variational sounding, Geophysical Journal International, 51: 313–325. ##
[16]. Kao D, Orr, D (1982) Magnetotelluric studies in the Market Weighton area of eastern England, Geophys, Geophysical Journal International, 70, 2: 323–337. ##
[17]. Caldwell T G, Bibby H, Brown C (2004) The magnetotelluric phase tensor, Geophysical Journal International, 158: 457-469. ##
[18]. Marti A, Queralt P, Ledo J (2009) WALDIM: A code for the dimensionality analysis of Magnetotelluric data using the rotational invariants of the Magnetotelluric tensor, Comput. Geosci, 35: 2295–2303. ##
[19]. Krieger L, Peacock J R (2014) MTpy: a python toolbox for magnetotellurics, Computers and Geosciences, 72: 167–175. ##
[20]. Aster R C, Borchers B, Thurber C H (2013) Parameter estimation and inverse problems, academic press. [21]. Tikhonov A N, Arsenin V Y (1977) Solution of Ill-Posed Problems, Wiley, NewYork, 258. ##
[22]. Abedi M, Gholami A, Norouzi G H, Fathianpour N( 2013) Fast inversion of magnetic data using Lanczos bidiagonalization method, Journal of Applied Geophysics, 90: 126–137. ##
[23]. Calvetti D, Morigi S, Reichel L, Sgallari F (2000) An L-ribbon for large underdetermined linear discrete ill-posed problems, Numer Algorithms, 25: 89–107. ##
[24]. Hestenes M R, Stiefel E (1952) Methods of conjugate gradients for solving linear systems, Journal of Research of the National Bureau of Standards, 49: 6: 409–436. ##
[25]. دهبان ی، نجاتی کلاته ع، رضایی م و میرزایی م (1398) تخمین و مدل‌سازی سه‌بعدی ضخامت رسوبات روی پی‌سنگ به‌منظور اکتشاف ذخایرهیدروکربن با استفاده از داده‌های ژئوفیزیکی منطقه جنوبی هلند، پژوهش نفت، 105: 135-125. ##
[26]. Nemeth T, Normark E, Qin F (1997) Dynamic smoothing in crosswell traveltime tomography, Geophysics, 62, 168–176. ##
[27]. Sasaki Y (1989) Two-dimensional joint inversion of magnetotelluric and dipole-dipole resistivity data, Geophysics, 54: 254–262. ##
[28]. Yi M J, Kim J H, Chung S H (2003) Enhancing the resolving power of least-squares inversion with active constraint balancing, Geophysics, 68, 3: 931–941. ##
[29]. Lee S K, Kim H J, Song Y, Lee C (2009) MT2DInvMatlab-A program in MATLAB and FORTRAN for two-dimensional magnetotelluric inversion, Computers and Geosciences, 35: 1722-1734. ##