تفسیر الکتروفاسیس‌ها با استفاده از شبکه عصبی SOM و ارتباط آن با لیتوفاسیس‌های گروه خامی در میدان نفتی مارون (جنوب غرب ایران)

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه حوضه‌های رسوبی و نفت، دانشکده علوم زمین، دانشگاه شهید بهشتی، تهران، ایران

چکیده

این پژوهش برای اولین بار به مطالعه مخزن خامی از جنبة الکتروفاسیس و تفکیک بخش‌های مخزنی در 5 چاه و شناسایی واحدهای جریانی در 2 چاه در میدان نفتی مارون می‌پردازد. همچنین برای اولین بار در این میدان نفتی داده‌های واحدهای جریانی با داده‌های حاصل از مطالعات پتروگرافی در این مطالعه مورد مقایسه قرار گرفتند. در این میدان براساس داده‌های حاصل از نگارهای چاه‌پیمایی و روش خوشه‌بندی 5 الکتروفاسیس شناسایی و تفکیک شدند. در ادامه الکتروفاسیس‌های مورد مطالعه با واحدهای جریانی حاصل از تخلخل و تراوایی مغزه‌ها مطابقت شدند. داده‌های حاصل از آزمایش فشار موئینه نشان می‌دهند که از واحد جریانی 1 به‌سمت واحد جریانی 4 به مقدار و اندازه گلوگاه‌های تخلخل اضافه شده و ارتباط این گلوگاه‌ها افزایش می‌یابد. مقایسه الکتروفاسیس‌ها و داده‌های واحدهای جریانی همراه با مطالعات پتروگرافی مخزن نشان‌دهندة ارتباط مناسب الکتروفاسیس‌ها و لیتوفاسیس‌ها است. همچنین، ارتباط نزدیکی بین اطلاعات مربوط به الکتروفاسیس‌ها و لیتوفاسیس‌ها نشان می‌دهد که مخزن خامی تا حدودی یک مخزن پتروفیزیکی است، به‌طوری‌که تغییرات زون‌های تولیدی با تغییرات پتروفیزیکی همخوانی کاملاً واضحی نشان می‌دهد. در خاتمه مدل نهایی حاصله در چاه مبنا براساس تلفیق الکتروفاسیس‌های تعیین شده و لیتوفاسیس‌های مورد مطالعه این مدل در کل چاه‌های موجود واقع در میدان نفتی مارون بسط داده شد. این مدل قادر به شناسایی و تفکیک نواحی دارای کیفیت مخزنی خوب و بد از یکدیگر است. مدل حاصله در مخزن خامی از میدان مارون می‌تواند جهت توسعة مدل استاتیک مورد استفاده قرار گیرد.
 

کلیدواژه‌ها


عنوان مقاله [English]

Determination and Interpretation of Electrofacies using SOM Neural Network and its Application to Prediction of Khami Group Facies in Marun Oil Field (South West Iran)

نویسندگان [English]

  • Mohsen Liaghat
  • Mohammad Reza Nuraei-nedhad
  • Mohammad Hossein Adabi
Department of Sedimentary Basin and Petroleum, Faculty of Earth Science, Shahid Beheshti University, Iran
چکیده [English]

In this research electrofacies and reservoir zonation in 5 wells together with flow unit characterization in the Khami reservoir are investigated in Marun oilfield for the first time. The flow units data are compared with petrographic studies in this oilfield. Based on well logging data as well as clustering method, 5 electrofacies determined and separated. The studied electrofacies are correlated with flow units derived from core porosity and permeability. Capillary pressure tests indicated an increase of amount and porous size from flow unit 1 to flow unit 4 together with increment in their relationship. Based on electrofacies and flow units data along with petrography studies the comparison in reservoir indicated a suitable relationship between electrofacies and lithofacies. Similarity between electrofacies and lithofacies data indicated that the Khami reservoir is almost a petrophysical reservoir reflecting compatible characteristics between productive zones and petrophysical variations. Integration between determined electrofacies and the studied lithofacies presented as a final model in base well and developed all over the Marun oilfield. This model can determine and differentiate areas involving good and bad reservoir quality. The proposed model can apply for developing a static model in the Maron oilfield.
 

کلیدواژه‌ها [English]

  • Electrofacies
  • Lithofacies
  • Clustering
  • SOM method
  • Khami Group
  • Marun oilfield
[1]. Flügel E, Munnecke A (2013) Microfacies of carbonate rocks: analysis, interpretation and application, 2ed. Berlin, Heidelberg: Springer‐Verlag. ##
[2]. Serra O (1984) Fundamentals of well logging interpretation, Elsevier, Amsterdam. ##
[3]. Yan J (2016) SOM: Self-Organizing Map, R package version 0.3-5.1, URL https://CRAN.R-project.org/package=som. ##
[4]. Wehrens R, Kruisselbrink J (2018) Flexible self-organizing maps in kohonen 3.0., Journal of Statistic Software, 87, –18. . ##
[5]. Serra O, Abbott H T (1982) The contribution of logging data to sedimentary sedimentology and stratigraphy, Society of Petroleum Engineers Journal, 1, 5: 117–131. ##
[6]. آقانباتی ع. (1397) فرهنگ چینه‌شناسی ایران، دوره 5، انتشارات سازمان زمین‌شناسی و اکتشاف معدنی کشور. ##
[7]. Sepehr M, Cosgrove J W (2004) Structural framework of the Zagros fold–thrust belt, Iran, Marine and Petroleum geology, 21, 7: 829-843. ##
[8]. ستوده‌نیا، م (1365) ارزیابی و مدل‌سازی مخزن خامی در میدان نفتی مارون، گزارش شماره پ- 34563، اداره زمین‌شناسی تحت‌الارضی، شرکت ملی مناطق نفت‌خیز جنوب، 213ص، منتشر نشده. ##
[9]. شیخ‌زاده ع م (1389) مطالعات مخزنی و ارزیابی مغز‌های توالی‌های فهلیان تا سورگاه در میدان نفتی مارون، گزارش داخلی اداره زمین شناسی تحت‌الارضی و ژئوفیزیک شرکت ملی مناطق نفت‌خیز جنوب، منتشرنشده. ##
[10]. کرامت، ع (1383) خصوصیات مدل استاتیکی و کیفیت مخزنی واحدهای 23 تا 87 میدان نفتی مارون، گزارش داخلی شرکت ملی مناطق نفت‌خیز جنوب، منتشر نشده. ##
[11] Jooybari A, Rezaie P (2016) Petrophysical evaluation of the Sarvak formation based on well logs in Dezful Embayment, Zagros fold zone, South West of Iran, Journal of Technology and Applied Science Research, 7, 1: 1358-1362. ##
[12] Colman-Sadd S P (1978) Fold development in Zagros simply folded belt, Southwest Iran, AAPG, 62, 6: 984-1003. ##
[13] Dunham R J (1962) Classification of carbonate rocks according to depositional texture, AAPG, 1, 108–121. ##
[14] Pittman E D (1998) Relationship of porosity and permeability to various parameters derived from mercury injection-capillary pressure curves for sandstone, AAPG, 76, 2, 191-198. ##
[15]. کدخدائی ایلخچی ر، رضایی م، موسوی حرمی، ر (1393) بررسی رخساره‌های الکتریکی مخزنی در قالب واحدهای جریانی هیدرولیکی در میدان ویچررنج مربوط به حوضه پرت واقع در استرالیای غربی، مجله پژوهش‌های چینه‌نگاری و رسوب‌شناسی، دوره 22، شماره 54، صفحات 22. ##
[16]. Saggaf M M, Nebrija E L (2003) A fuzzy logic approach for the estimation of facies from wire-line logs, AAPG, 87, 7, 87: 1223-1240. ##
[17]. Lippmann R P (1989) Review of neural networks for speech recognition, Neural computation, 1, 1, 1-38. ##
[18]. Sefidari E, Kadkhodaie-Ilkhchi S, Najjari S (2012) Comparison of intelligent and statistical clustering approaches to predicting total organic carbon using intelligent systems, Journal of Petroleum Science and Engineering, 45, 4: 86–87. ##
[19]. Davis J C (2018) Mathematical Geosciences, 1st ed., 1 of Series Title, Springer, Cham, Publisher, Chap. 1, 211– 223.
[20]. Serra O (2008) Well Logging Handbook, Éditions Technip, Paris. ##
[21]. Gill D, Shomrony A, Shomrony H J A B (1993) Numerical zonation of log suites and logfacies recognition by multivariate clustering, AAPG, 77, 10: 1781-1791. ##
[22]. Kohonen T (1972) Correlation matrix memories, Computer IEEE Trans, 1, 5: 353-359. ##
[23]. Nader F H (2017) Multi-scale quantitative diagenesis and impacts on heterogeneity of carbonate reservoir rocks, Springer, International Publishing. ##
[24]. موحد ب (1389) مبانی چاه‌پیمایی، انتشارات دانشگاه امیرکبیر. ##
[25]. Ishido T, Pritchett J W (1999) Numerical simulation of electro kinetic potentials associated with subsurface fluid flow, Journal of Geophysical Research: Solid Earth, 104, B7, 15247-15259. ##