توزیع تنش در مخازن شکاف‌دار: اثر تراکم شکستگی، بارگذاری زاویه‌دار و پارامترهای سنگ و شکستگی

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی نفت، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

چکیده

حضور شکستگی‌های طبیعی در مخازن شکاف‌دار نقش مهمی در تعیین وضعیت تنش که تحت تأثیر تنش‌های تکتونیکی و آشفتگی محلی قرار دارد، ایفا می‌کند. جهت شکستگی، پایداری چاه و ناهمسانگردی تراوایی از جمله موارد وابسته به تغییرات تنش محلی هستند. امروزه برای درک بهتر رفتار ژئومکانیکی مخازن، اکثر مدل‌سازی‌های رفتار مکانیکی و هیدرولیکی با تغییرات تنش کوپل می‌شوند. در این پژوهش به منظور بررسی ارتباط بین تراکم شکستگی (به‌عنوان یکی از خواص هندسی شبکه شکستگی) و نیز بارگذاری تنش تکتونیکی زاویه‌دار، با تغییرپذیری تنش و کرنش برشی، ابتدا با استفاده از رویکرد تصادفی، شبکه شکستگی مجزا (DFN) ایجاد گردید. سپس با در نظر گرفتن ماهیت تانسوری تنش، میدان تنش با استفاده از نرم‌افزار FLAC2D بر پایه روش تفاضل محدود، تعیین شد. در نهایت داده‌های تنش با استفاده از روابط ریاضی مبتنی بر تانسور، مورد تجزیه و تحلیل قرار گرفت. در ادامه تأثیر چهار پارامتر مقاومت کششی سنگ، چسبندگی سنگ، سفتی نرمال شکستگی و زاویه اتساع شکستگی بر پراکندگی تنش در بارگذاری تحت زوایای مختلف، مورد ارزیابی قرار گرفت. نتایج نشان داد که آشفتگی تنش و واریانس مؤثر که معرف پراکندگی توزیع تنش است، با تراکم شکستگی که به‌صورت تعداد شکستگی بر واحد سطح با استفاده از رویکرد نمونه‌برداری پنجره‌ایی تعریف می‌شود، رابطه مستقیم دارد. همچنین مشاهده شد که جهت بارگذاری در تغییرپذیری تنش کل تأثیرگذار بوده و واریانس مؤثر، در زاویه بارگذاری °50 دارای بیشترین و در °170 دارای کمترین مقدار است. در میان پارامترها، مشخص گردید که سفتی نرمال بیشترین تأثیر را در توزیع تنش داشته و تأثیر پارامترهای سنگ بسیار ناچیز است. به‌طور کل می‌توان گفت توزیع و پراکندگی تنش در یک شبکه شکستگی متراکم با سفتی نرمال GPa/m 500 و زاویه بارگذاری °50، دارای مقدار بیشینه است.
 
 

کلیدواژه‌ها


عنوان مقاله [English]

Stress Distribution in Fractured Reservoirs: Effects of Fracture Density, Oblique Loading and Parameters of Rock and Fracture

نویسندگان [English]

  • Meysam Khodaei
  • Ebrahim Biniaz Delijani
  • Mastaneh Hajipour
  • Kasra Karroubi
Department of Petroleum Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
چکیده [English]

The presence of natural fractures in fractured reservoirs plays an important role in determining the stress state that is affected by tectonic stresses and local perturbation. Fracture orientation, well stability and permeability anisotropy are all factors associated with local stress variations. Nowadays, to better understand the geomechanical behavior of reservoirs, most mechanical and hydraulic behavior modelings are coupled with stress variations. In this study, in order to investigate the correlation between fracture density (as one of the geometric properties of fracture network) and oblique loading of tectonic stress, with the variability of stress and shear strain, a discrete fracture network (DFN) was generated using the stochastic approach. Afterwards, considering the tensorial nature of the stress, the stress field under different conditions of tectonic stresses was determined using FLAC2D software as a finite-difference method. Finally, stress data were analyzed using tensor-based mathematical equations. Then, the effect of four parameters of (1) rock tensile strength, (2) rock cohesion, (3) fracture normal stiffness, and (4) fracture dilation angle on stress dispersion in loading at different angles were evaluated. The results showed that the stress perturbation and the effective variance, which indicate the dispersion of the stress distribution, have a direct relationship with the fracture density, which is defined as the number of fractures per area unit utilizing the window sampling approach. Moreover, the loading orientation is effective in total stress variability, and the effective variance is highest at loading angle of 50° and lowest at 170°. Among the parameters, it was found out that normal stiffness had the greatest effect on stress distribution, and the effects of the rock parameters were negligible. Overall, it can be said that the stress distribution and dispersion, in a dense fracture network with a normal stiffness of 500 GPa/m and a loading angle of 50°, have the maximum value.
 

کلیدواژه‌ها [English]

  • Stress Variability
  • Local Stress Perturbation
  • Effective Variance
  • Oblique Loading
  • Fracture Density
[1]. Zoback MD (2010) Reservoir geomechanics, Cambridge, UK: Cambridge University Press. ##
[2]. Farsimadan M, Dehghan AN, Khodaei M (2020) Determining the domain of in situ stress around Marun Oil Field’s failed wells, SW Iran, Journal of Petroleum Exploration and Production Technology, 1-10. ##
[3]. دهقان ع. ن و خدایی م.، (1396) مطالعه آزمایشگاهی تاثیر شکاف‎ از پیش موجود بر گسترش شکافت هیدرولیکی تحت تنش‎های سه محوری واقعی، پژوهش نفت، 27(4-96)، 71-80. ##
[4]. Latham JP, Xiang J, Belayneh M, Nick HM, Tsang CF,  Blunt M J (2013) Modelling stress-dependent permeability in fractured rock including effects of propagating and bending fractures, International Journal of Rock Mechanics and Mining Sciences, 57: 100-112. ##
[5]. Martin CD, Chandler NA (1993) Stress heterogeneity and geological structures, International Journal of Rock Mechanics and Mining Science and Geomechanics Abstracts, 30, 7: 993–999. ##
[6]. Mcnamara D D, Massiot C, Lewis B, & Wallis IC (2015) Heterogeneity of structure and stress in the Rotokawa Geothermal Field, New Zealand Journal of Geophysical Research: Solid Earth, 120: 1243–1262. ##
[7]. Bruno MS, Winterstein DF (1994) Some influences of stratigraphy and structure on reservoir stress orientation. Geophysics, 59, 6: 954-962. ##
[8]. Day-Lewis A, Zoback M,  Hickman S (2010) Scale-invariant stress orientations and seismicity rates near the San Andreas Fault, Geophysical Research Letters, 37: L24304. ##
[9]. Rajabi M, Tingay M, King R, Heidbach O (2017) Present-day stress orientation in the Clarence-Moreton Basin of New South Wales, Australia: A new high density dataset reveals local stress rotations, Basin Research, 29: 622–640. ##
[10]. Balberg I, Binenbaum N (1983) Computer study of the percolation threshold in a two-dimensional anisotropic system of conducting sticks. Physical Review B, 28, 7: 3799. ##
[11]. Robinson PC (1984) Numerical calculations of critical densities for lines and planes, Journal of Physics A: Mathematical and General, 17, 14: 2823. ##
[12]. Long JC, Billaux DM (1987) From field data to fracture network modeling: an example incorporating spatial structure, Water Resources Research, 23, 7: 1201-1216. ##
[13]. Andersson J, Dverstorp B (1987) Conditional simulations of fluid flow in three‐dimensional networks of discrete fractures, Water Resources Research, 23, 10: 1876-1886. ##
[14]. Min KB, Jing L, Stephansson O (2004) Determining the equivalent permeability tensor for fractured rock masses using a stochastic REV approach: method and application to the field data from Sellafield, UK. Hydrogeology Journal, 12, 5: 497-510. ##
[15]. Baghbanan A, Jing L (2008) Stress effects on permeability in a fractured rock mass with correlated fracture length and aperture, International Journal of Rock Mechanics and Mining Sciences, 45, 8: 1320-1334. ##
[16]. Oda M, Yamabe T, Ishizuka Y, Kumasaka H, Tada H, Kimura K (1993) Elastic stress and strain in jointed rock masses by means of crack tensor analysis, Rock Mechanics and Rock Engineering, 26, 2: 89-112. ##
[17]. Rutqvist J, Leung C, Hoch A, Wang Y, Wang Z (2013) Linked multicontinuum and crack tensor approach for modeling of coupled geomechanics, fluid flow and transport in fractured rock, Journal of Rock Mechanics and Geotechnical Engineering, 5, 1: 18-31. ##
[18]. Figueiredo B, Tsang CF, Rutqvist J, Niemi AA (2015) Study of changes in deep fractured rock permeability due to coupled hydro-mechanical effects, International Journal of Rock Mechanics and Mining Sciences, 79: 70-85. ##
[19]. Einstein HH, Baecher GB (1983) Probabilistic and statistical methods in engineering geology. Rock Mechanics and Rock Engineering, 16, 1: 39-72. ##
[20]. Bonnet E, Bour O, Odling NE, Davy P, Main I, Cowie P, Berkowitz B (2001) Scaling of fracture systems in geological media, Reviews of Geophysics, 39, 3: 347-383. ##
[21]. Barton CA, Zoback MD (1992) Self‐similar distribution and properties of macroscopic fractures at depth in crystalline rock in the Cajon Pass Scientific Drill Hole, Journal of Geophysical Research: Solid Earth, 97, B4: 5181-5200. ##
[22]. Zeeb C, Gomez-Rivas E, Bons PD, Blum P (2013) Evaluation of sampling methods for fracture network characterization using outcrops. AAPG Bulletin, 97, 9, 1545-1566. ##
[23]. Alghalandis YF (2017) ADFNE: Open source software for discrete fracture network engineering, two and three dimensional applications, Computers & Geosciences, 102: 1-11. ##
[24]. Itasca Consulting Group Inc. FLAC (Version 7.0) manual. Minneapolis (USA); 2017. ##
[25]. Itasca Consulting Group Inc. FLAC3D (Version 5.0) manual. Minneapolis (USA); 2012. ##
[26]. Gao K (2017) Contributions to tensor-based stress variability characterisation in rock mechanics (doctoral dissertation), PhD diss., University of Toronto (Canada). ##
[27]. Gao K, Harrison JP (2016) Mean and dispersion of stress tensors using Euclidean and Riemannian approaches. International Journal of Rock Mechanics and Mining Sciences, 85: 165-173. ##
[28]. Gao K, Harrison JP (2018) Multivariate distribution model for stress variability characterisation, International Journal of Rock Mechanics and Mining Sciences, 102: 144-154. ##