تخمین عمق سنگ بستر حوضه‌های رسوبی با وارون‌سازی داده‌های گرانی بوسیله الگوریتم رقابت ذرات

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده‌ مهندسی معدن، نفت و ژئوفیزیک، دانشگاه صنعتی شاهرود، ایران

2 مدیریت اکتشاف نفت، تهران، ایران

چکیده

ضخامت رسوبات در حوضه‌های رسوبی دارای پتانسیل منابع هیدورکربوری، فاکتور مهمی در تعیین بلوغ حرارتی این حوضه‌ها محسوب می‌شود. روش گرانی سنجی، یکی از روش‌های ژئوفیزیکی است که می‌تواند در این‌گونه مسائل اطلاعات ارزشمندی از عمق سنگ بستر مدفون ارائه نماید. تحقیق پیش‌رو با هدف مدل‌سازی دوبعدی هندسه سنگ بستر حوضه رسوبی با استفاده از وارون‌سازی داده‌های گرانی‌سنجی بوسیله الگوریتم رقابت ذرات به انجام رسید. از مدل جمع دو بعدی منشورها به عنوان مدل ریاضی هندسی مدل‌سازی داده‌های گرانی استفاده شد. در این تحقیق، امکان کاربرد الگوریتم جستجوی عمومی رقابت ذرات به عنوان جایگزین روش‌های جستجوی محلی پاسخ از قبیل مارکوارت-لونبرگ و گاوس-نیوتن؛ در مدل‌سازی غیرخطی سنگ بستر داده‌های گرانی استفاده شد. این الگوریتم نوین بر اساس الگوریتم نسبتا قدیمی تجمع ذرات که پیشتر در مسائل بهینه‌سازی در زمینه های گوناگون، پیاده سازی و اجرا شده ؛ طراحی شده است. در این تحقیق، طراحی و پیاده‌سازی الگوریتم در دو مرحله اعتبارسنجی شد. نخست صحت‌سنجی الگوریتم بر روی داده‌های تولیدی از یک مدل مصنوعی مورد راستی آزمایی واقع شد. بدین منظور کارآیی روش پیشنهادی در دو حالت بدون نوفه و همراه با نوفه مورد بررسی قرار گرفت؛ که نتایج گویای پایداری مناسب آن در برابر نوفه‌های سفید گاوسی با دامنه‌های نسبتا بالابود. به گونه ای که در مدل‌سازی به ازای 8٪ نوفه سفید گاوسی، پارامتر میانگین مربع خطا برای داده‌های تولیدی با داده اولیه از mGal 2/1 و برای مدل به‌دست آمده با مدل اولیه از m 68 فراتر نرفت. در بخش پایانی این تحقیق، وارون‌سازی داده‌های واقعی گرانی‌سنجی در حوضه رسوبی مغان انجام شد و در این بخش نیز مقایسه نتایج به‌دست آمده از الگوریتم پیشنهادی با نتایج مطالعات پیشین از جمله نتایج لرزه‌نگاری؛ گویای عملکرد مناسب آن است.
 

کلیدواژه‌ها


عنوان مقاله [English]

Depth Estimation of Sedimentary Basins Basement from Gravity Data Via Competitive Swarm Optimization

نویسندگان [English]

  • amir joolaei 1
  • Alireza Arab-Amiri 1
  • Ali Nejati Kalateh 1
  • shahab ghomi 2
1 School of Mining, Petroleum and Geophysics, Shahrood University of Technology, Iran
2 Geophysics Department, Exploration Directorate, National Iranian Oil Company, Tehran, Iran
چکیده [English]

The thickness of sediments in sedimentary basins with hydrocarbon sources potential is one of the primary factors in determining the thermal maturation of these basins. This research has been done with the aim of two-dimensional modeling of the basement geometry of a sedimentary basin using the inversion of the gravimetric data. A common way for this problem consists in discretizing the basin using polygons (or other geometries), and iteratively solving the nonlinear inverse problem by local optimization. This procedure provides a solution that is highly dependent on the initial model and on the prior information that are used. Moreover, due to non-linearity of this inverse problem, local optimization methods would fail whenever there is no reliable initial model. Global optimization methods are promising alternative to classical inversion methods because the quality of their solutions does not depend on the initial model; also, they do not use the derivatives of the objective function. This research investigates the design and implementation of the CSO (competitive swarm optimization) algorithm as a novel algorithm in global optimization, for two-dimensional non-linear modeling of gravity data as a substitute for the local response methods such as Marquardt-Levenberg and Gauss-Newton. In first steps, designing and implementing the proposed algorithm were verified on synthetic model data. For evaluating the validation of this developed algorithm, it was tasted by both synthetic example include free noise data and data with presence of white Gaussian noise. Also, the results of application of this applying on noisy data show that this approach is robust to the presence of noise in data. Finally, reliability of proposed method to the inversion of a real gravity data was confirmed by applying it on a real gravity profile in the Moghan sedimentary basin. Results of this modeling agree well with previously published works on this Area.
 

کلیدواژه‌ها [English]

  • Sediment Thickness
  • Gravity Inversion
  • Global Optimization
  • Competitive Swarm Optimization
[1]. Boschetti F, Mike D, Ron L (1997) Inversion of potential field data by genetic algorithms, Geophysical Prospecting 45, 3: 461-478.##
[2]. Zhdanov Michael S (2002) Geophysical inverse theory and regularization problems 36, Elsevier. ##
[3]. Pallero JL, Fernández-Muñiz MZ, Cernea A, Álvarez-Machancoses Ó, Pedruelo-González LM, Bonvalot. S, Fernández-Martínez JL (2018) Particle swarm optimization and uncertainty assessment in inverse problems, Entropy 20, 2: 96. ##
[4]. Bott MHP (1960) The use of rapid digital computing methods for direct gravity interpretation of sedimentary basins, Geophysical Journal of the Royal Astronomical Society 3, 1: 63-67. ##
[5]. Talwani M, Worzel J, Ladisman M (1959) Rapid computation of gravitational attraction of three dimensional bodies of arbitrary shape, Journal of Geophysical research 64, 1: 49-59. ##
[6]. Kearey P, Brooks M, Hill I (2013) An introduction to geophysical exploration, John Wiley & Sons. ##
[7]. Shuang Xiangyun L, Tianyou Liu H (2014) A stochastic inversion method for potential field data: ant colony optimization, Pure and Applied Geophysics 17, 7: 1531-1555. ##
[8]. Chakravarthi V (1995) Gravity interpretation of non-outcropping sedimentary basins in which the density contrast decreases parabolically with depth, Pure Appl. Geophysics 145, 2: 327–335. ##
[9]. Silva JBC, Costa DCL, Barbosa VCF (2006) Gravity inversion of basement relief and estimation of density contrast variation with depth, Geophysics 71, 5: J51–J58. ##
[10]. Silva JB, Santos DF, Gomes KP (2014) Fast gravity inversion of basement relief. Geophysics 79, 5: G79-G91. ##
[11]. Pallero JLG, Fernández-Martínez JL, Bonvalot S, Fudym O (2015) Gravity inversion and uncertainty assessment of basement relief via Particle Swarm Optimization, Journal of Applied Geophysics 116: 180-191. ##
[12]. Jamasb A, Motavalli‐Anbaran S H, Zeyen H (2017) Non‐linear stochastic inversion of gravity data via quantum‐behaved particle swarm optimisation: application to Eurasia–Arabia collision zone (Zagros, Iran), Geophysical Prospecting 65: 274-294. ##
[13]. Snieder R (1998) The role of nonlinearity in inverse problems, Inverse Problems 14.3. ##
[14]. Tarantola A (2005) Inverse problem theory and methods for model parameter estimation, Society for Industrial and Applied Mathematics. ##
[15]. Yuan S, Shangxu W, Nan T (2009) Swarm intelligence optimization and its application in geophysical data inversion, Applied Geophysics 6, 2: 166-174. ##
[16]. Nagihara S, Hall SA (2001) Three-dimensional gravity inversion using simulated annealing: Constraints on the diapiric roots of allochthonous salt structures, Geophysics 66, 5: 1438-1449. ##
[17]. Yuan S, Tian N, Chen Y, Liu H, Liu Z (2008) Nonlinear geophysical inversion based on ACO with hybrid techniques, In Natural Computation, ICNC›08. Fourth International Conference on 4 530-534, IEEE. ##
[18]. Shaw R, Srivastava S (2007) Particle swarm optimization: A new tool to invert geophysical data, Geophysics 72, 2, F75–F83. ##
[19]. Barbosa VCF, Silva JBC (1994) Generalized compact gravity inversion, Geophysics 59.1: 57-68. ##
[20]. Telford W M, Telford W M, Geldart LP, Sheriff R E (1990) Applied Geophysics, 1, Cambridge University press.
[21]. Ran Ch, Jin Y. (2015) A competitive swarm optimizer for large scale optimization, IEEE Transactions on Cybernetics 45, 2: 191-204. ##
[22]. Ran Ch, Sun Ch, Jin Y (2013) A multi-swarm evolutionary framework based on a feedback mechanism, Evolutionary Computation. ##
[23]. جولائی ا.، عرب‌امیری ع.ر و نجاتی کلاته ع.، «مدل‌سازی وارون غیر خطی داده‌های گرانی سنگ بستر با استفاده از الگوریتم رقابت استعماری»، پژوهش‌های ژئوفیزیک کاربردی، آماده چاپ، 1398. ##
[24]. گزارش نهایی زمین‌شناسی:» طرح جامع اکتشاف حوضه رسوبی مغان»، شرکت ملی نفت ایران، 1388. ##
[25]. Jafarzadeh M, Harami R M, Friis H, Amini A, Mahboubi A, Lenaz D (2014) Provenance of the oligocene–miocene zivah formation, NW Iran, assessed using heavy mineral assemblage and detrital clinopyroxene and detrital apatite analyses, Journal of African Earth Sciences 89: 56-71. ##
[26]. نجاتی کلاته ع.، ابراهیم‌زاده اردستانی و. ش. ا.، متولی عنبران، س. ه.، قمی ش. و جوان ا.، «مدل‌سازی وارون دو بعدی غیر خطی داده‌های گرانی‌سنجی ناحیه مغان با استفاده از روش مارکوارت لونبرگ» مجله علوم زمین، شماره ،74 ، صـفحة 13-20 ، 1388. ##