مطالعه و بررسی تأثیر نانو ذرات روی اکسید بر بهبود عملکرد غشاهای نانوفیلتراسیون بر پایه PVDF/PES

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی شیمی، دانشکده مهندسی، دانشگاه اراک، ایران

چکیده

در پژوهش حاضر، غشاهای نانوکامپوزیتی از نانوذرات آب‌دوست روی اکسید (ZnO) و پلی وینیلیدن فلوراید (PVDF) توسط روش تغییر فاز تهیه شدند. اثر غلظت‌های مختلف نانوذرات در ساخت غشاها بر عملکرد جداسازی محلول‌های مختلف مورد ارزیابی قرار گرفت. جهت ارزیابی ساختار و شیمی سطح غشاها از تصاویر میکروسکوپی الکترونی روبشی و طیف سنجی مادون قرمز تبدیل فوریه (ATR-FTIR) استفاده شده است. نتایج نشان می‌دهد که محتوای آب غشاهای ساخته شده از 96/77% در غشای M1 بدون نانوذره به 60/79% در غشای M3 شامل 1/0% وزنی از نانوذرات افزایش می‌یابد و سپس به 59/66% در غشای M5 کاهش پیدا می‌کند. بالاترین میزان شار آب خالص عبوری L/m2h 97/19 در 1/0% وزنی نانوذرات (غشای M3) به‌دست آمد. لازم به ذکر است که فاکتور پس‌دهی سدیم سولفات در غشاها دارای روند افزایشی- کاهشی است و از 59% به 82% در غشای M3 افزایش و سپس از 82 به 62% کاهش می‌یابد. بنابراین، نتایج عملکرد بهینه را برای غشای M3 نشان می‌دهند. این مطالعه پتانسیل غشاهای تهیه شده از پلی وینیلیدین فلوراید/ روی اکسید را برای کاربردهای تصفیه فاضلاب نشان می‌دهد.
 

کلیدواژه‌ها


عنوان مقاله [English]

Fabrication and Modification of PVDF/PES-Based Nanofiltration Membranes by Zinc Oxide Nanoparticles

نویسندگان [English]

  • Fahime Parvizian
  • Samaneh Sadi
  • SayedMohsen Hosseini
  • Samaneh Bandehali
Department of Chemical Engineering, Faculty of Engineering, Arak University, Iran
چکیده [English]

In this research, polyether sulfone (PES)/ polyvinylidene fluoride (PVDF) nanocomposite membranes were prepared form hydrophilic ZnO nanoparticles by phase inversion process. The effects of different concentrations of nanoparticles were investigated in terms of separation performance. In addition, the prepared membranes were characterized by SEM and AT-IR analysis. The results showed that the water content membranes increase from 77.96% in M1 (without nanoparticle) to 79.60% in M3 for 0.1 wt.% of ZnO, and the highest pure water flux was observed 19.97 L/m2h in 0.1 wt.%. Furthermore, the Na2SO4 rejection increased from 59% in M0 to 832% in M3. Thus, M3 showed the best performance separation among all prepared membranes. Ultimately, this study shows the potential PVDF-PES/ZnO membranes for application in wastewater treatment.
 

کلیدواژه‌ها [English]

  • Nanofiltration
  • Zinc Oxide Nanoparticles
  • Poly (ether sulfone)
  • Polyvinylidene Fluoride
[1]. Rahimpour A., “UV photo-grafting of hydrophilic monomers onto the surface of nano-porous PES membranes for improving surface properties,” Desalination, Vol. 265, Issue 1-3, pp. 93-101, 2011. ##
[2]. Schäfer A. I., Fane A. G. and Waite T. D., “Nanofiltration: principles and applications,” Elsevier, 2005. ##
[3]. Seader J. D. and Henley E. J., “Separation process principle,” 2nd ed., John Wiley & Sons, pp. 493-574, New Jersey, 2006.
[4]. Ji Y., Qian W., Yu Y., An Q., Liu L., Zhou Y. and Gao C., “Recent developments in nanofiltration membranes based on nanomaterials,” Chinese Journal of Chemical Engineering, Vol. 25, Issue. 11, pp. 1639-1652, 2017. ##
[5]. Xu L., Du L. S. and He J., “Effects of operating conditions on membrane charge property and nanofiltration,” Frontiers of Chemical Science and Engineering, Vol. 5, Issue. 4, pp. 492-499, 2011. ##
[6]. Paul M. and Jons S. D., “Chemistry and fabrication of polymeric nanofiltration membranes: A review,” Vol. 103, pp. 417-456, 2016. ##
[7]. Yan L., Li Y. S. and Xiang C. B., “Preparation of poly (vinylidene fluoride)(pvdf) ultrafiltration membrane modified by nano-sized alumina (Al2O3) and its antifouling research,” Polymer, Vol. 46, Issue. 18, pp. 7701-7706, 2005. ##
[8]. Yu L. Y., Xu Z. L., Shen H. M. and Yang H., “Preparation and characterization of PVDF–SiO2 composite hollow fiber UF membrane by sol–gel method,” Journal of Membrane Science, Vol. 337, Issue. 1-3, pp. 257-265, 2009. ##
[9]. Li N., Xiao C., an S. and Hu X., “Preparation and properties of PVDF/PVA hollow fiber membranes,” Desalination, Vol. 250, Issue 2, pp. 530-537, 2010. ##
[10]. Cui A., Liu Z., Xiao C. and Zhang Y., “Effect of micro-sized SiO2-particle on the performance of PVDF blend membranes via TIPS,” Journal of Membrane Science, 360, Issue. 1-2, pp. 259-264, 2010. ##
[11]. Yan L., Li Y. S., Xiang C. B. and Xianda S., “Effect of nano-sized Al2O3-particle addition on PVDF ultrafiltration membrane performance,” Journal of Membrane Science, Vol. 276, Issue. 1-2, pp. 162-167, 2006. ##
[12]. Yan L., Hong S., Li M. L. and Li Y. S., “Application of the Al2O3–PVDF nanocomposite tubular ultrafiltration (UF) membrane for oily wastewater treatment and its antifouling research,” Separation and Purification Technology, Vol. 66, Issue 2, pp. 347-352, 2009. ##
[13]. Hou D., Wang J., Qu D., Luan Z. and Ren X., “Fabrication and characterization of hydrophobic PVDF hollow fiber membranes for desalination through direct contact membrane distillation,” Separation and Purification Technology, Vol. 69, Issue 1, pp. 78-86, 2009. ##
[14]. Bagheripour E., Moghadassi A. and Hosseini S. M., “Preparation of mixed matrix PES-based nanofiltration membrane filled with PANI-co-MWCNT composite nanoparticles,” Korean Journal of Chemical Engineering, Vol. 33, Issue 4, pp. 1462-1471, 2016. ##
[15]. Liang S., Xiao K., Mo Y. and Huang X., “A novel ZnO nanoparticle blended polyvinylidene fluoride membrane for anti-irreversible fouling,” Journal of Membrane Science, Vol. 394, pp. 184-192, 2012. ##
[16]. Hosseini S., Madaeni S., Heidari A. and Moghadassi A., “Preparation and characterization of polyvinyl chloride/styrene butadiene rubber blend heterogeneous cation exchange membrane modified by potassium perchlorate,” Desalination, Vol. 279, Issue 1-3, pp. 306-314, 2011. ##
[17]. Hamid N., Ismail A., Matsuura T., Zularisam A., Lau W., Yuliwati E. and Abdullah M., “Morphological and separation performance study of polysulfone/titanium dioxide (PSF/TiO2) ultrafiltration membranes for humic acid removal,” Desalination, Vol. 273, Issue 1, pp. 85-92, 2011. ##
[18]. Han R., Zhang S., Liu C., Wang Y. and Jian X., “Effect of NaA zeolite particle addition on poly (phthalazinone ether sulfone ketone) composite ultrafiltration (UF) membrane performance,” Journal of Membrane Science, Vol. 345, Issue 1-2, pp. 5-12, 2009. ##
[19]. Vatanpour V., Madaeni S. S., Moradian R., Zinadini S. and Astinchap B., “Fabrication and characterization of novel antifouling nanofiltration membrane prepared from oxidized multiwalled carbon nanotube/polyethersulfone nanocomposite,” Journal of Membrane Science, Vol. 375, Issue. 1-2, pp. 284-294, 2011. ##
[20]. Lee H. S., Im S. J., Kim J. H., Kim H. J., Kim J. P. and Min B. R., “Polyamide thin-film nanofiltration membranes containing TiO2 nanoparticles,” Desalination, Vol. 219, Issue 1-3, pp. 48-56, 2008. ##
[21]. Ashkenov N., Mbenkum B., Bundesmann C., Riede V., Lorenz M., Spemann D., Kaidashev E., Kasic A., Schubert M. and Grundmann M., “Infrared dielectric functions and phonon modes of high-quality ZnO films,” Journal of Applied Physics, Vol. 93, Issue 1, pp. 126-133, 2003. ##
[22]. Gholami A., Moghadassi A., Hosseini S., Shabani S. and Gholami F., “Preparation and characterization of polyvinyl chloride based nanocomposite nanofiltration-membrane modified by iron oxide nanoparticles for lead removal from water,” Journal of Industrial Engineering Chemistry, Vol. 20, Issue 4, pp. 1517-1522, 2014. ##
[23]. Daraei P., Madaeni S. S., Ghaemi N., Salehi E., Khadivi M. A., Moradian R. and Astinchap B., “Novel polyethersulfone nanocomposite membrane prepared by PANI/Fe3O4 nanoparticles with enhanced performance for Cu (II) removal from water,” Journal of Membrane Science, Vol. 415, pp. 250-259, 2012. ##
[24]. Bagheripour E., Moghadassi A., Hosseini S., Ray M., Parvizian F. and Van der Bruggen B., “Highly hydrophilic and antifouling nanofiltration membrane incorporated with water-dispersible composite activated carbon/chitosan nanoparticles,” Chemical Engineering Research Design, Vol. 132, pp. 812-821, 2018. ##
[25]. Chang X., Wang Z., Quan S., Xu Y., Jiang Z. and Shao L., “Exploring the synergetic effects of graphene oxide (GO) and polyvinylpyrrodione (PVP) on poly (vinylylidenefluoride)(PVDF) ultrafiltration membrane performance,” Applied Surface Science, Vol. 316, pp. 537-548, 2014. ##
[26]. Rajabi H., Ghaemi N., Madaeni S. S., Daraei P., Khadivi M. A. and Falsafi M., “Nanoclay embedded mixed matrix PVDF nanocomposite membrane: preparation, characterization and biofouling resistance,” Applied surface science, Vol. 313, pp. 207-214, 2014.##
[27]. Gholami N. and Mahdavi H., “Nanofiltration composite membranes of polyethersulfone and graphene oxide and sulfonated graphene oxide,” Advances in Polymer Technology, Vol. 37, Issue 8, pp. 3529-3541, 2018.##
[28]. Zhang Q., Fan L., Yang Z., Zhang R., Liu Y. N., He M., Su Y. and Jiang Z., “Loose nanofiltration membrane for dye/salt separation through interfacial polymerization with in-situ generated TiO2 nanoparticles,” Applied Surface Science, Vol. 410, pp. 494-504, 2014.##
[29]. He Y., Tang Y. P., Ma D. and Chung T. S., “UiO-66 incorporated thin-film nanocomposite membranes for efficient selenium and arsenic removal,” Journal of Membrane Science, Vol. 541, pp. 262-270, 2017.##
[30]. Wang Y., Zhu J., Dong G., Zhang Y., Guo N. and Liu J., “Sulfonated halloysite nanotubes/polyethersulfone nanocomposite membrane for efficient dye purification,” Separation Purification Technology, Vol. 150, pp. 243-251, 2015.##
[31]. پرویزیان ف.، موسوی مطهر م. س.، س. حسینی م. و باقری‌پور ا.، "ساخت و ارزیابی غشای ترکیبی نانوفیلتراسیون به منظور تصفیه پساب بر پایه پلی اترسولفون/پلی وینیلیدن فلوراید،" پژوهش نفت, جلد 103، صحفه 68-79، 1397.##