چینه‌نگاری چرخه‌ای بخش بالایی سازند دالان با استفاده از تحلیل طیفی تحولی با روش‌های تبدیل سریع فوریه و چند‌کاهنده در میدان گازی سلمان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه زمین‌شناسی، دانشکده علوم پایه، دانشگاه ارومیه، ایران

2 گروه زمین‌شناسی، دانشکده علوم زمین، دانشگاه تبریز، ایران

چکیده

بخش بالایی سازند دالان در میدان سلمان از مخازن مهم گازی پرمین است. هدف از این مطالعه، بررسی چینه‌نگاری چرخه‌ای بخش بالایی سازند دالان با روش‌های تحلیل طیفی تحولی از نوع تبدیل سریع فوریه و روش چند‌کاهنده به منظور تعیین چرخه‌های میلانکوویچ و برآورد نرخ انباشت رسوب از روش‌های ضریب همبستگی تحولی و سطوح مهم تحولی با استفاده از نرم‌افزار Acycle و نگاره گامای طیفی در این میدان است. در این پژوهش طبق روش نسبت‌های طول چرخه، نزدیک 18 چرخه حرکت گریز از مرکز طولانی مدت و حدود 72 چرخه حرکت گریز از مرکز کوتاه مدت و 162 چرخه انحراف محور چرخش زمین طولانی مدت و 342 چرخه حرکت تقدیمی محور زمین طولانی مدت برای این بخش از سازند دالان شناسایی گردید. با استفاده از تحلیل طیفی تحولی مشخص شد که رسوب‌گذاری در بخش بالایی سازند دالان در چاه 2SK-1 بیشتر تحت تأثیر عملکرد کنترل نجومی چرخه‌های حرکت گریز از مرکز طولانی مدت و کوتاه مدت بوده است. به‌علاوه نرخ انباشت رسوب در این چاه برای بخش بالایی سازند دالان با استفاده از روش‌های ضریب همبستگی تحولی و سطوح مهم تحولی cm 4 در هر هزار سال یا به‌عبارت دیگر، m 40 در هر میلیون سال برآورد گردید. براساس مقیاس زمان‌نجومی چرخه‌های حرکت گریز از مرکز طولانی مدت، مدت زمان 7290 هزار سال برای پهنه‌های زیستی ارائه شده در بخش بالایی سازند دالان در این چاه محاسبه شد. با توجه به هم‌زمان بودن چرخه‌های 405 هزار ساله با ظهور و زوال زون‌های ارائه شده، تأثیر این چرخه‌ها بر پراکندگی آن‌ها مشخص گردید.
 

کلیدواژه‌ها


عنوان مقاله [English]

Cyclostratigraphy of the Upper Dalan Member by using Evolutionary Spectral Analysis with Fast Fourier Transform and Multitaper Methods in the Salman Gas Field

نویسندگان [English]

  • Omid Falahatkhah 1
  • Aliasghar Siabeghodsi 1
  • Ali Kadkhodaie 2
1 Department of Geology, Urmia University, Iran
2 Department of Geology, Faculty of Earth Sciences, University of Tabriz, Iran
چکیده [English]

The upper Dalan member in the Salman field is one of the important Permian gas reservoirs. The purpose of this study was to analyze the cyclostratigraphy of the upper Dalan member by using Evolutionary Spectral Analysis with Fast Fourier transform and multitaper methods, and thereby Milankovitch cycles would be determined and sediment accumulation rates would be estimated by Evolutionary Correlation Coefficient and Evolutionary significance levels using Acycle software and spectral gamma ray log in this field. In this study, according to the method of cycle length ratios, approximately 18 long-term eccentricity cycles and about 72 short-term eccentricity cycles and 162 long-term obliquity cycles and 342 long-term precession cycles for this section of Dalan Formation was identified. Through spectral analysis, it was revealed that sedimentation in the upper part of the Dalan Formation in the 2S-K1 well was mostly affected by astronomical control function of the long-term eccentricity cycles and short-term eccentricity cycles. In addition, the sediment accumulation rates in this well for the upper part of the Dalan Formation were estimated using Evolutionary Correlation Coefficients and Evolutionary significance levels of 4 cm per thousand years, or 40 m per million years. Based on astronomical calibration of long-term eccentricity cycles, the 7290 kyr Astronomical time scale for biozones provided by the Petroleum Industry Research Institute in the upper part of the Dalan Formation was calculated in this well. Finally, the effect of these cycles on their distribution was determined with the coincidence of 405 kyr cycles with the appearance and downfall of the presented zones.
 

کلیدواژه‌ها [English]

  • Cyclostratigraphy
  • Upper Dalan Member
  • Spectral Gamma Ray (SGR) Log
  • Acycle Software
  • Salman Gas Field
[1]. Szabo F. and Kheradpir A., “Permian and triassic stratigraphy of zagros basin, southwest iran,” Journal of Petroleum Geology, Vol. 12, pp. 57-82, 1978. ##
[2]. Insalaco E., Virgone A., Coutme B., Gaillot J., Kamali M., Moallemi A , Lotfpour M.  And Monibi S., “Upper dalan member and Kangan formation between zagros mountains and offshore Fars, Iran,” depositional system, biostratigraphy and stratigraphic architecture: GeoArabia, Vol. 11, pp. 75-173, 2006. ##
[3]. “Salman gas wells petrophysical & geological study reports,” Kish Petroleum Engineering Company, 2015. ##
[4]. Kashfi M. S., “Geology of the permian ‘supergiant’ gas reservoirs in the greater persian gulf area,” Journal of Petroleum Geology, Vol. 15, pp. 465-480, 1992. ##
[5]. Kashfi M. S. “The greater Persian gulf Permian - triassic stratigraphic nomenclature requires study,” Oil and Gas Journal, Tulsa, Vol. 98, No. 45, pp. 36-44, November 6, 2000. ##
[6]. Strasser A., Hilgen F. J., Heckel P. H., “Cyclostratigraphy- concepts, definitions, and applications,” Newsl. Stratigr. Vol. 42, pp. 75-114, 2006. ##
[7]. Hinnov L. A. and Ogg J. G., “Cyclostratigraphy and the astronomical time scale,” Stratigraphy, Vol. 4, No. 2-3, 239-251, 2007.
[8]. Zheng X. P. and Luo P., “Analysis and application of milankovitch cycles on feixianguan formation, northeast sichuan basin, china,” [J]. Natural Gas Exploration and Development, Vol. 3, pp. 16-19, 2004. ##
[9]. Abels H. A., Abdul Aziz H., Krijgsman W., Smeets S. J. B. and Hilgen F.J., “Long-period 400 eccentricity control on sedimentary sequences in the continental Madrid Basin (middle 401 Miocene, Spain),” Earth and Planetary Science Letters, Vol. 289, Issue 1-2, pp. 220–231, 2010. ##
[10]. Mitchell R. N., Bice D. M., Montanari A., Cleaveland L. C., Christianson K. T., Coccioni R. and Hinnov L. A.,  “Ocean anoxic cycles? Prelude to the Livello Bonarelli (OAE 2)” Earth and Planetary Science Letters, Vol. 267, pp. 1-16, 2008. ##
[11]. Bahk J., J., Um I. K., Yi B., Y. Yoo D. G., “Paleoceanographic implications and cyclostratigraphy of variations in well-log data from the western slope of the ulleung basin, east sea,” Quaternary International, 392, pp. 58-68., 2016. ##
[12]. Gorgas T. J. and Wilkens R. H., “Sedimentation rates off sw africa since the late miocene deciphered from spectral analyses of borehole and GRA bulk density profiles,” ODP Sites 1082e1084. Marine Geology 180, 29e47, 2002. ##
[13]. Paulissen W. and Luthi S. M., “High-frequency cyclicity in a miocene sequence of the vienna basin established from high-resolution logs and robust chronostratigraphic tuning,” Palaeogeography Palaeoclimatology Palaeoecology, Vol. 307, Issue 1-4, pp. 313-323, 2011. ##
[14]. Whittaker A., “Bore hole data and geophysical log stratigraphy,” In: Unlocking the Stratigraphical Record Advances in Modern Stratigraphy. Bennett, 1998. ##
[15]. Ji-feng Y U., Feng-gui SUI., Zeng LI., Hua. LIU, Wang. Yu-lin. “Recognition of milankovitch cycles in the stratigraphic record: application of the CWT and the FFT to well-log data,” J. China Univ. Mining and Technol, Vol. 18, pp. 594-598, 2008. ##
[16]. Melnyk, D.H., Athersuch, J. & Smith, D.G. “Estimating the dispersion of biostratigraphic events in the subsurface by graphic correlation—an example from the Late Jurassic of the wessex basin, UK,” Marine and Petroleum Geology, Vol. 9, Isuue 6, pp. 602–607, 1992. ##
[17]. Melnyk D. H., Smith D. G. and Amiri-Garroussi K., “Filtering and frequency mapping as tools in subsurface cyclostratigraphy, with examples from the wessex basin, UK,” In: de Boer, P.L. & Smith, D.G. (eds) Orbital Forcing and Cyclic Sequences. Blackwell Scientific, Oxford, pp. 35–46, 1994. ##
[18]. Li M., Hinnov L. and Kump L., “Acycle: Time-series analysis software for paleoclimate research and education, Computers and Geosciences, Vol. 127, pp. 12 22, 2019. ##
[19]. Kodama K. P., Hinnov L. A., “Rock magnetic cyclostratigraphy,” Wiley-Blackwell, p. 176, 2015. ##
[20]. Chen G., Gang W., Liu Y., Wang N., Guo Y., Zhu C. and Cao Q., “High resolution sediment accumulation rate determined by cyclostratigraphy and its impact on the organic matter abundance of the hydrocarbon source rock in the yanchang formation, ordos basin, china» Marine and Petroleum Geology, Vol 103, pp. 1-11, May 2019. ##
[21] Thomson, D.J., “Spectrum estimation and harmonic analysis,” Proc. IEEE, Vol. 70, Issue 9, pp. 1055–1096, 1982. ##
[22] Meyers S. R., “Seeing red in cyclic stratigraphy: spectral noise estimation for astrochronology,” Paleoceanography, Vol. 27, Issue 3, (PA3228), 2012. ##
[23]. Mayer H. and Appel E., “Milankovitch cyclicity and rock-magnetic signatures of palaeoclimatic change in the Early cretaceous biancone Formation of the South-ern alps, italy,” Cretac. Res., Vol. 20, Issue 2, pp. 189–214, 1999. ##
[24]. Berger A., “Milankovitch theory and climate,” Rev. Geophys., Vol. 26, Issue 4, pp. 624-657, 1988. ##
[25] Berger A., Loutre M. F. and Dehant V., “Astronomical frequencies for pre-quarternary palaeoclimate studies,” Terra nova, Vol. 1, pp. 474–479, 1989. ##
[26] Berger, A., Loutre, M.F., “Astronomical forcing through geological time,” In: De Boer P. L., Smith D. G. (Eds), Orbital Forcing and Cyclic Sequences, 19. Blackwell Scientific Publications, Oxford, pp. 15-24, 1994. ##
[27]. Laskar J., Robutel P., Joutel F., Gastineau M., Correia A. C. M. and Levrard B., “Along-term numerical solution for the insolation quantities of the Earth,” As-tron. Astrophys, Vol. 428, Issue 1, pp. 261–285, 2004. ##
[28]. De Vleeschouwer D., Rakocinski M., Racki G., Bond D. P. G., Sobien K. and Claeys P. P., “The astronomical rhythm of Late-Devonian climate change (Kowala section, Holy Cross Mountains, Poland),” Earth Planet. Sci. Lett. 365, 25–37, 2013. ##
[29]. Paillard D., Labeyrie L. and Yiou P., “Macintosh program performs time-series analysis,” Eos, Trans Am Geophys Union, Vol. 77, Issue 39. pp. 379–379, 1996. ##
[30]. Chen G., Gang W., Liu Y, Wang N., Guo Y., Zhu C. and Cao Q., “High resolution sediment accumulation rate determined by cyclostratigraphy and its impact on the organic matter abundance of the hydrocarbon source rock in the yanchang formation, ordos basin, china,” Marine and Petroleum Geology, Vol. 103, pp. 1-11, May 2019. ##
[31]. Li M., Huang C., Ogg J., Zhang Y., Hinnov L., Wu H., Chen Q.Z. and Zou Z., “Paleoclimate proxies for cyclostratigraphy: Comparative analysis using a Lower Triassic marine section in South China,” Earth-Science Reviews, Vol 189, pp.125-146, February 2019. ##
[32]. Wu H. C., Zhang S. H., Jiang G. Q. and Huang Q. H., “The floating astronomical time scale for the terrestrial Late Cretaceous Qingshankou Formation from the Songliao Basin of Northeast China and its stratigraphic and paleoclimate implications,” Earth and Planetary Science Letters, Vol. 278, Issue 3-4, pp. 308-323, 2009. ##
[33]. Li M. S., Hinnov L. A., Huang C. J. and Ogg J., “Sedimentary noise and sea levels linked to land-ocean waterexchange and obliquity forcing,” Nature communications, Vol. 9, No.1, 1004, 2018. ##
[34]. Li M. S., Huang C. J., Hinnov L. A., Ogg J., Chen Z. Q. and Zhang Y., “Obliquity-forced climate during the Ear
ly Triassic hothouse in China,” Geology, Vol. 44, Issue 1, pp. 623-626, 2016. ##
[35]. Li M., Kump L. R., Hinnov L. A., Mann M. E., “Tracking variable sedimentation rates and astronomical forcing in Phanerozoic paleoclimate proxy series with evolutionary correlation coefficients and hypothesis testing,” Earth and Planetary Science Letters, Elsevier, Vol. 501, pp. 165–179, 2018. ##
[36]. Zhong M., Chen D., Fan J., Wu H., Fang Q., Shi M., “Cyclostratigraphic calibration of the upper ordovician (sandbian katian) pagoda and linhsiang formations in the yichang area, south china,” Acta Geologica Sinica (English Edition), Vol. 93(supp 1): 177-180, 2019. ##
[37]. RIPI report, 2001. “Biozonation of kangan formation, salman gas field,” Research Institute of Petroleum Industry, Tehran. Unpublished Report. ##
[38]. Huang C. J., “Astronomical time scale for the mesozoic,” Cyclostratigraphy and astrochronology, Vol. 3, 1st ed., pp. 81-150, 2018. ##
[39]. Rafiee P., Baghbani D., Aghanabati A. and Arian M., “Microbiostratigraphy and lithostratigraphy of the upper permian dalan formation in kuh-e-surmeh (zagros basin, southwest iran),” International Journal of Geography and Geology, Vol. 4, Issue 4, pp. 68-67, 2015. ##