بهبود عملکرد جداسازی غشاهای نانوفیلتراسیون برپایه پلی‌اترایمید توسط نانوذرات عامل‌دار دی اکسید تیتانیوم

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی شیمی، دانشکده فنی مهندسی، دانشگاه اراک، ایران

چکیده

در این مطالعه، ابتدا نانوذرات تیتانیوم دی اکسید با استفاده از ترکیب ال-سیستین/گلیسیدیل پاس اصلاح گردیده و سپس نانوذرات ترکیبی تهیه شده جهت ساخت و اصلاح غشاهای نانوفیلتراسیون بر پایه پلی اتر ایمید به‌کار گرفته شد. نتایج ارزیابی طیف سنجی مادون قرمز حاکی از شکل‌گیری موفقیت‌آمیز نانو ذرات ترکیبی می‌باشد. همچنین، جهت ارزیابی ساختار و سطح غشاها از آنالیز عکس‌برداری میکروسکوپ الکترونی و میکروسکوپ نیروی اتمی استفاده شد. میزان ترواش‌پذیری و عملکرد جداسازی غشاهای ساخته شده، توسط شار آب خالص عبوری و پس‌دهی میزان نمک ارزیابی شد. نتایج به‌دست آمده حاکی از افزایش قابل توجه میزان شار آب خالص تا L/m2.h 03/22 در غشای حاوی 1 درصد وزنی نانوذرات ترکیبی می‌باشد که به دلیل حضور گروه‌های آب‌دوست در سطح غشا نسبت داده می‌شود. به‌علاوه، میزان پس‌دهی نمک سدیم سولفات در غشاهای اصلاح شده به 78% رسید که نسبت به غشای پایه پلی اتر- ایمید خالص افزایش یافت. غشای اصلاح شده حاوی نانوذرات ترکیبی کارآیی بالاتری در مقایسه با نمونه غشای حاوی ترکیب ال-سیستین/گلیسیدیل پاس و نیز غشای پایه نشان داد. نتایج به‌دست آمده حاکی از بهبود خواص ضدگرفتگی غشاهای اصلاح شده محتوی نانوذرات ترکیبی در مقایسه با نمونه پایه می‌باشد.
 

کلیدواژه‌ها


عنوان مقاله [English]

mprovement in Separation Performance of PEI-Based Nanofiltration Membrane by Using Functionalized Titanium Dioxide Nanoparticles

نویسندگان [English]

  • Samaneh Bandehali
  • Abdolreza Moghadassi
  • Fahime Parvizian
  • Sayed Mohsen Hosseini
Department of Chemical Engineering, Faculty of Engineering, Arak University, Iran
چکیده [English]

In this study, titanium dioxide nanoparticles were functionalized by L-cysteine/POSS and then utilized in fabrication and modification of PEI-based nanofiltration membranes. The FTIR results confirm the formation of composite nanoparticles decisively. Also, SEM and AFM were used in membrane characterization. The water permeability and separation performance of prepared membranes were studied by pure water flux and salt rejection considering. Obtained results showed that PWF increased up to 22.03 (L/m2.h) by applying 0.1 wt.% composite nanoparticles due to hydrophilic agents on the membrane surface. Moreover, the sodium sulfate rejection reached to 78% in modified membranes in comparison with pristine membrane. The modified membranes which contain composite nanoparticles showed more efficiency compared to the blended membrane with L-cysteine/POSS and pristine membrane. The results also exhibited improved antifouling ability for modified membrane in comparison to pristine membrane.
 

کلیدواژه‌ها [English]

  • Nanofiltration Membrane
  • Poly-Ether-Imide
  • Titanium Dioxide Nanoparticles
  • L-cysteine/POSS
  • Separation Performance
[1]. Mulder M., “Basic principles of membrane technology,” Kluwer Academic Publishers, Netherlands, 1996.##
[2]. Fane A. G., Tang C. Y. and Wang R., “Membrane technology for water: Microfiltration, ultrafiltration, nanofiltration, and reverse osmosis,” in: P. Wilderer (Ed.) Treatise on water science, Elsevier Science, Amsterdam; Hackensack, NJ, pp. 301-335, 2011.##
[3]. Zareei F. and Hosseini S. M., “A new type of polyethersulfone based composite nanofiltration membrane decorated by Cobalt ferrite-Copper oxide nanoparticles with enhanced performance and antifouling property,” Separation and Purification Technology, Vol. 226, pp. 48-58, 2019.##
[4]. Rana D. and T. Matsuura, “Surface modifications for antifouling membranes,” Chemical reviews, Vol. 110, Issue 4, pp. 2448-2471, 2010.#3
[5]. Gullinkala T., “Evaluation of poly (ethylene glycol) grafting as a tool for improving membrane performance,” in: The University of Toledo, 2010.##
[6]. Baker R. W., “Membrane technology and applications,” John Wiley & Sons Ltd., England, 2004.##
[7]. See Toh Y. H., “Green asymmetric molecule manufacture using organic solvent nanofiltration and homogeneous catalyst recycle,” in:  Department of Chemical Engineering and Chemical Technology, Imperial College - London, London SW7 2BY, UK, 2005.##
[8]. Ying Y., Ying W., Li Q., Meng D., Ren G., Yan R. and Peng X.J.A.M.T., “Recent advances of nanomaterial-based membrane for water purification,” Vol. 7, pp. 144-158, 2017.##
[9]. Zhang M., Guan K., Ji Y., Liu G., Jin W. and Xu N., “Controllable ion transport by surface-charged graphene oxide membrane,” Nature communications, Vol. 10, Issue 1, pp. 1253-1261, 2019.##
[10]. Sianipar M., Kim S.H., Iskandar F. and Wenten I. G., “Functionalized carbon nanotube (CNT) membrane: progress and challenges,” RSC Advances, Vol. 7, Issue 81, pp. 51175-51198, 2017.##
[11]. Madhura L., Singh S., Kanchi S., Sabela M. and Bisetty K., “Inamuddin, Nanotechnology-based water quality management for wastewater treatment,” Environmental Chemistry Letters, Vol. 17, Issue 1, pp. 65-121, 2015.##
[12]. Lingamdinne L. P., Koduru J. R. and Karri R. R., “A comprehensive review of applications of magnetic graphene oxide based nanocomposites for sustainable water purification,” Journal of Environmental Management, Vol. 231, pp. 622-634, 2019.##
[13]. You X., Wu H., Su Y., Yuan J., Zhang R., Yu Q., Wu M., Jiang Z. and Cao X.-Z., “Precise nanopore tuning for high-throughput desalination membrane via codepostion of dopamine and multifunctional POSS,” Journal of Materials Chemistry A, Vol. 6, pp. 13191-13202, 2018.##
[14]. He Y., Tang Y. P. and Chung T. S., “Concurrent removal of selenium and arsenic from water using polyhedral oligomeric silsesquioxane (POSS)–polyamide thin-film nanocomposite nanofiltration membranes,” Industrial Engineering Chemistry Research, Vol. 55, Issue 50, pp. 12929-12938, 2016.##
[15]. Rahimpour A., Jahanshahi M., Rajaeian B. and Rahimnejad M., “TiO2 entrapped nanocomposite PVDF/SPES membranes: preparation, characterization, antifouling and antibacterial properties,” Desalination, Vol. 278, Issue 10-3, pp. 343-353, 2011.##
[16]. Hosseini S. M., Nemati M., Jeddi F., Salehi E., Khodabakhshi A. R. and Madaeni S. S., “Fabrication of mixed matrix heterogeneous cation exchange membrane modified by titanium dioxide nanoparticles: mono/bivalent ionic transport property in desalination,” Desalination, Vol. 359, pp. 167-175, 2015.##
[17]. Dias Filho N. L., Marangoni F., Costa R. M. J. J. o. c. and science i., “Preparation, characterization, and CuX2 and CoX2 (X= Cl−, Br−, ClO−4) adsorption behavior of a polyhedral oligomer silsesquioxane functionalized with an organic base," Vol. 313, Issue 1, pp. 34-40, 2007.##
[18]. Xie K., Jing L., Zhao W. and Zhang Y., “Adsorption removal of Cu2+ and Ni2+ from waste water using nano cellulose hybrids containing reactive polyhedral oligomeric silsesquioxanes,” Journal of Applied Polymer Science, Vol. 122, Issue 5, pp. 2864-2868, 2011.##
[19] . You X., Ma T., Su Y., Wu H., Wu M., Cai H., Sun G. and Jiang Z., “Enhancing the permeation flux and antifouling performance of polyamide nanofiltration membrane by incorporation of PEG-POSS nanoparticles,” Journal of Membrane Science, Vol. 540, pp. 454-463, 2017.##
[20]. Dalwani M., Zheng J., Hempenius M., Raaijmakers M. J., Doherty C. M., Hill A. J., Wessling M. and Benes N. E., “Ultra-thin hybrid polyhedral silsesquioxane–polyamide films with potentially unlimited 2D dimensions,” Journal of Materials Chemistry A, Vol. 22, Issue 30, pp. 14835-14838, 2012.##
[21]. Chen S. C., Fu X. Z. and Chung T. S., “Fouling behaviors of polybenzimidazole (PBI)–polyhedral oligomeric silsesquioxane (POSS)/polyacrylonitrile (PAN) hollow fiber membranes for engineering osmosis processes,” Desalination, Vol. 335, Issue 1, pp. 17-26, 2014.##
[22]. Duan J., Litwiller E. and Pinnau I., “Preparation and water desalination properties of POSS-polyamide nanocomposite reverse osmosis membranes,” Journal of Membrane Science,Vol. 473, pp.157-167, 2015.##
[23]. Lu C., Su C., Cao H., Ma X., Duan F., Chang J. and Li Y., “F-POSS based omniphobic membrane for robust membrane distillation,” Materials Letters, Vol. 228, pp. 85-88, 2018.##
[24]. Jansen J. C., Darvishmanesh S., Tasselli F., Bazzarelli F., Bernardo P., Tocci E., Friess K., Randova A. , Drioli E., Van der Bruggen B., “Influence of the blend composition on the properties and separation performance of novel solvent resistant polyphenylsulfone/polyimide nanofiltration membranes,” Journal of Membrane Science, Vol, 447 pp. 107-118, 2013.##
[25]. McKeen L. W., “Fatigue and tribological properties of plastics and elastomers,” 3nd ed., Elsevier, Amsterdam, Netherlands, 2015.##
[26]. Chang Y. W., Wang E., Shin G., Han J. E. and Mather P. T., “Poly (vinyl alcohol)(PVA)/sulfonated polyhedral oligosilsesquioxane (sPOSS) hybrid membranes for direct methanol fuel cell applications,” Polymers for Advanced Technologies, Vol. 18, Issue 7, pp. 535-534, 2007.##
[27]. Rahimpour A., Madaeni S. S., Taheri A. H. and Mansourpanah Y., “Coupling TiO2 nanoparticles with UV irradiation for modification of polyethersulfone ultrafiltration membranes,” Journal of Membrane Science, Vol. 313, Issue 1-2, pp. 158-169, 2008.##
[28]. Mansourpanah Y., Madaeni S., Rahimpour A., Farhadian A. and Taheri A., “Formation of appropriate sites on nanofiltration membrane surface for binding TiO2 photo-catalyst: performance, characterization and fouling-resistant capability,” Journal of Membrane Science, Vol. 330, Issue 1-2, pp. 297-306, 2009.##
[29]. Bagheripour E., Moghadassi A., Hosseini S., Van der Bruggen B. and Parvizian F., “Novel composite graphene oxide/chitosan nanoplates incorporated into PES based nanofiltration membrane: Chromium removal and antifouling enhancement,” Journal of Industrial Engineering Chemistry, Vol. 62, pp. 311-320, 2018.##
[30]. León A., Reuquen P., Garín C., Segura R., Vargas P., Zapata P. and Orihuela P. A., “FTIR and raman characterization of TiO2 nanoparticles coated with polyethylene glycol as carrier for 2-methoxyestradiol,” Applied Sciences, Vol. 7, Issue 1, pp. 49-58, 2017.##
[31]. Bagheripour E., Moghadassi A., Hosseini S., Ray M., Parvizian F. and Van der Bruggen B., “Highly hydrophilic and antifouling nanofiltration membrane incorporated with water-dispersible composite activated carbon/chitosan nanoparticles,” Chemical Engineering Research Design, Vol. 132, pp. 812-821, 2018.##
[32]. Farjami M., Moghadassi A., Vatanpour V., Hosseini S. M. and Parvizian F., “Preparation and characterization of a novel high-flux emulsion polyvinyl chloride (EPVC) ultrafiltration membrane incorporated with boehmite nanoparticles,” Journal of Industrial Engineering Chemistry, Vol. 72, pp. 144-156, 2019.##
[33]. Mehrnia M. R., Mojtahedi Y. M. and Homayoonfal M., “What is the concentration threshold of nanoparticles within the membrane structure? A case study of Al2O3/PSf nanocomposite membrane,” Desalination, Vol. 372, pp. 75-88, 2015.##
[34]. Mobarakabad P., Moghadassi A. and Hosseini S., “Fabrication and characterization of poly (phenylene ether-ether sulfone) based nanofiltration membranes modified by titanium dioxide nanoparticles for water desalination,” Desalination, Vol. 365, pp. 227-233, 2015.##
[35]. Moghadassi A., Bagheripour E. and Hosseini S., “Investigation of the effect of tetrahydrofuran and acetoneas cosolvents in acrylonitrile–butadiene–styrene–based nanofiltration membranes,” Journal of Applied Polymer Science, Vol. 134, pp. 44993-44999 , 2018.##
[36]. Bagheripour E., Moghadassi A. and Hosseini S. M., “Incorporated Poly Acrylic Acid-co-Fe3O4 Nanoparticles Mixed Matrix Polyethersulfone based Nanofiltration Membrane in Desalination Process,” International Journal of Engineering, Vol. 30, Issue 6, pp. 821-829, 2017.##
[37] .He H. B., Li B., Dong J. P., Lei Y. Y., Wang T. L., Yu Q. W., Feng Y. Q. and Sun Y. B., “Mesostructured nanomagnetic polyhedral oligomeric silsesquioxanes (POSS) incorporated with dithiol organic anchors for multiple pollutants capturing in wastewater,” ACS Applied Materials Interfaces, Vol. 5, Issue 16, pp. 8058-8066, 2013.##