[1]. Stanislaus A., Marafi A. and Rana M. S., “Recent advances in the science and technology of ultra-low sulfur diesel (ULSD) production,” Catal. Today. Vol. 153, pp. 1-68, 2010. ##
[2]. Kilbane J., “Microbial biocatalyst developments to upgrade fossil fuels,” Curr.Opin. Biotechnol. Vol.17, pp. 305-314, 2006. ##
[3]. Mohebali G. and Ball A., “Biodesulfurization of diesel fuels: Past, present and future perspectives,” Interna. Biodeterio. Biodegra., Vol. 110, pp. 163-180, 2016. ##
[4]. Kodama K., Umehara K., Shimizu K., Nakatanni S., Minuda Y. and Yamad K., “Identification of microbial products from dibenzothiophene and its proposed oxidation pathway,” Agr. Biol. Chem., Vol. 37, pp. 45-50, 1973. ##
[5]. Singh S. and Schwan A., “Sulfur metabolism in plants and related biotechnologies,” In: Moo-Young, M. (Ed.), Comprehensive Biotechnology., Vol. 4, pp. 257-271, 2011. ##
[6]. Kashefi K. and Lovley D. R., “Extending the upper temperature limit for life,” Science, Vol. 301, Issue 5635, pp. 934-934, 2003. ##
[7]. Konishi J., Onaka T., Ishii Y. and Suzuki M., “Demonstration of the carbon sulfur bond targeted desulfurization of benzothiophene by thermophilic Paenibacillus sp. Strain A11-2 capable of desulfurizing dibenzothiophene,” FEMS Microbiol. Lett, Vol. 187, pp. 151-154, 2000. ##
[8]. Kirimura K., Furuya T., Nishii Y., Ishii Y., Kino K. and Usami S., “Biodesulfurization of dibenzothiophene and its derivatives through the selective cleavage of carbon-sulfur bonds by a moderately thermophilic bacterium Bacillus subtilis WU-S2B,” J. Biosci. Bioeng., Vol. 91, pp. 262-266, 2001. ##
[9]. Ansari F., Grigoriev P., Libor S., Tothill I. and Ramsden J., “DBT degradation enhancement by decorating Rhodococcus erythropolis IGST8 with magnetic Fe3O4 nanoparticles,” Biotechnol. Bioeng., Vol. 102, pp. 1505-1512, 2009. ##
[10]. Mohebali G., Ball A., Rasekh B. and Kaytash A., “Biodesulfurization potential of a newly isolated bacterium, Gordonia alkanivorans RIPI90A,” Enz. Microb. Technol., Vol. 40, pp. 578–584, 2007. ##
[11]. Karimi E., Yazdian F., Rasekh B., Jeffryes C., Akhavan Sepahi A., Shahmoradi S., Omidi M., Azizi M., Esmaeili Bidhendi M. and Hatamian A., “DBT desulfurization by decorating bacteria using modified carbon nanotube,” Fuel., Vol. 216, pp. 787-795, 2018. ##
[12]. Kayser K., Cleveland L., Park H., Kwak J., Kolhatkar A. and Kilbane J., “Isolation and characterization of a moderate thermophile, Mycobacterium phlei GTIS10, capable of dibenzothiophene desulfurization,” Appl. Microbiol. Biotechnol., Vol. 59, pp. 737-746, 2002. ##
[13]. Rothchild L. and Mancinelli R., “Life in extreme environments, Nature" Vol. 409, pp. 1092-1101, 2001. ##
[14]. Wang J., Davaadelger B., Salazar J., Butler R., Pombert J., Kilbane J. and Stark B. “Isolation and characterization of an interactive culture of two Paenibacillus species with moderately thermophilic desulfurization ability,” Biotechnol. Lett, Vol. 37, pp. 2201-2211, 2015. ##
[15]. Shavandi M., Sadeghizadeh, M., Khajeh, K., Mohebali, G. and Zomorodipour, A. “Genomic structure and Promoter analysis of the dsz operon for dibenzothiophene biodesulfurization from Gordonia alkanivorans RIPI90A,” Appl. Microbiol. Biotechnol, Vol. 87, pp. 1455–1461, 2010. ##
[16]. Papizadeh M., Roayaei Ardakani M. and Motamedi H. “Growth-phase dependent biodesulfurization of Dibenzothiophene by Enterobacter sp. strain NISOC-03,” Pollution, Vol. 3, pp. 101-111, 2017. ##
[17]. Derikvand P., Etemadifar Z. and Saber H., “Sulfur removal from dibenzothiophene by newly isolated paenibacillus validus strain pd2 and process optimization in aqueous and biphasic (model-oil) systems,” Pol. J. Microbiol, Vol. 64, No. 1, pp. 47-54, 2015. ##
[18]. Arabian D., Najafi H., Farhadi F. and Molaei Dehkordi A. “Biodesufurization of simulated light fuel oil by a native isolated bacteria Bacillus cereus HN,” J. Pet. Sci. Technol, Vol. 4, No. 1, pp. 31-40, 2014. ##